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Abstract

This report investigates the scattering of a monochromatic acoustic wave
by an assumed unchanging atmospheric turbulence distribution that moves
with a uniform constant horizontal wind. The source and detector are at
rest at different positions in a ground-fixed frame. Theoretical expressions
are derived for the scattered acoustic pressure at the detector. Because dis-
tances and scattering angles change with time as any turbulent fluctua-
tion (turbule) flows through the scattering volume, the detector signal has
a time-dependent Doppler frequency shift. A simple formula for the con-
sequent frequency broadening is derived. A computer code is developed
that calculates the scattered signal and its fast Fourier transform scattered
by a single turbule, or by a collection of turbules of many different scale
lengths. The code uses a new approximate but quite accurate time-shift al-
gorithm that reduces the calculation time substantially. Several numerical
results from this code are presented for a model scenario that is similar to a
recent experimental scenario, with good agreement among spectral widths
and shapes.
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1. Introduction

This report investigates acoustic scattering by atmospheric turbulence that
is totally frozen (stationary) in a frame comoving with a uniform constant
horizontal wind. The ambient temperature is also assumed constant and
uniform. For convenience, the turbulence is modeled as an appropriate
collection of self-similar eddies or ”turbules,” as described in past litera-
ture [1]. A turbule is a localized region of temperature and/or flow velocity
fluctuations with respect to ambient values.

An acoustic detector and a monochromatic source are at rest in a ground-
fixed frame at different positions. The detector and source are assumed to
be in the far-field region of a turbule at any instant but in the near-field
region of the complete stationary volume that the turbules traverse. This
is almost always the case in experimental situations. The theory developed
during this work first obtains a Born approximation expression for the time
dependence of the acoustic pressure at the detector caused by scattering
of the source pressure wave by one turbule. A computer algorithm devel-
oped during this work calculates this expression. This algorithm also calcu-
lates the fast Fourier transform (FFT) of this pressure wave and reveals that
the wave’s frequency spectrum is both shifted and broadened appreciably
around the source frequency. The broadening occurs because the scattering
angles and distances for any turbule are slowly varying functions of time
for realistic wind speeds. A simple formula for the received frequency as
a function of time is also derived by two different methods; it predicts the
same broadening as the computer algorithm.

The conventional theory [2] does not allow for this kind of time depen-
dence, because it assumes that the detector and source are in the far-field
region of the whole scattering volume. Thus it predicts spectral broadening
only if there are time-dependent fluctuations in the comoving frame. Estab-
lishing the amount of spectral broadening and shifting for turbulence com-
pletely frozen in the comoving frame but for realistic near-field detector
and source locations thus became one of the most important objectives and
results of this work. The experimentally observed spectral broadening used
for comparison has a fairly narrow large peak around the source frequency
that is very jagged but overall appears Gaussian, with wide noisy-looking
wings at smaller amplitude. The theory developed in this report predicts
that the large narrow peak is due to large turbules, but the wide wings are
due to small ones, and also predicts that the jaggedness is due to random-
ness in turbule locations in the comoving frame. The computer algorithm
based on the theory yields spectra that exhibit the same general features as
some experimental data, including the spectral widths and jaggedness, for
realistic populations of turbules of many length scales.
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Also developed in this work is an efficient approximate method for adding
contributions of many small turbules of each size that are approximately
in-line with the wind. The method is demonstrated to be accurate, and
it reduces computer running time significantly, enough so that three-
dimensional modeling is indeed practical.
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2. Technical Discussion

2.1 Scattering by One Turbule

2.1.1 Geometry

The scattering geometry is defined by figure 1. The letters S,D, and T stand
for source, detector, and turbule, respectively. Coordinate z is vertical, z = 0
is the ground plane, and coordinates x and y are horizontal, ground-fixed.
The uniform constant horizontal wind is w, given by

w = w(ex cosφw + ey sinφw) , (1)

where (ex, ey, ez) are the Cartesian unit basis vectors and φw is the az-
imuthal angle of the wind as shown. The source S and detector D are at
locations given by position vectors (RS ,RD), respectively (fixed with re-
spect to the ground-fixed reference frame) and the turbule center T has
time-varying position vector RT (t).

The location of the “center” of the turbule T is given by

RT (t) = b̄ + wt , (2)

so b̄ is the location of the turbule at t = 0 in the ground-fixed frame.

The vectors RTS , RDT are defined by

RTS(t) ≡ RT (t)−RS , RDT (t) = RD −RT (t) . (3)

In the comoving (barred) frame, defined by

x̄ = x− wxt, ȳ = y − wyt, z̄ = z , (4)

so that the origins coincide at t = 0, we have

R̄T = b̄ , R̄S(t) = RS −wt , R̄D(t) = RD −wt (5)

so that

R̄TS(t) = R̄T − R̄S(t) = b̄− (RS −wt) = RTS(t) and (6)

R̄DT (t) = R̄D(t)− R̄T = RD −wt− b̄ = RDT (t) . (7)

Figure 1. Geometry in
ground-fixed reference
frame. z
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2.1.2 Scattered Acoustic Pressure at Detector

We seek expressions for the acoustic pressure waves (p̄Tas(t), p̄
v
as(t)) scat-

tered by the turbulent (temperature, velocity) fields of the turbule, as func-
tions of time at the detector. These expressions are derived in detail in ap-
pendix A. Here, we quote the results valid to all orders of β ≡ w/c, where c
is the ambient adiabatic sound speed, taken to be constant and uniform in
the scattering volume in this work. The source is assumed to be monochro-
matic and isotropic in its rest (ground-fixed) frame. Reflections from the
ground are ignored. From equation (A-71), we have for p̄Tas(t) the form

p̄Tas(t) = AT (t) exp(−iωst) + c.c. , (8)

where ωs is the source angular frequency and AT (t) is a (slowly varying)
complex-valued amplitude, given by equation (A-72):

AT (t) = −Pe
(
k2
sa
′

4πT0γ
2

) (
(R̄0)

2

(D̄s)3RDT

) ( ̂̄R0 · R̂DT
)
T̃ (K) exp[iks(R̄0 +RDT )] , (9)

where a hat over a vector indicates that it is a unit vector. Here, ks = ωs/c,
Pe is the pressure of the source wave a distance a′ from the source in a non-
moving atmosphere, T0 is the constant uniform ambient temperature, and

T̃ (K) is the spatial FFT of T̄ (r̄− b̄), the stationary temperature variation of
the turbule in the comoving frame, given by

T̃ (K) ≡
∫
d3ξT̄ (ξ) exp(−iK · ξ) . (10)

Also, the various vectors and distances are defined by equations (A-65) to
(A-70), as follows:

Ki = ks

{
R̂DTi − ∂R̄0

∂b̄i

}
, (11)

where

∂R̄0

∂b̄i
= (D̄s)−1(δij + R̂DTi β)(R̄0) , (12)

with

R̄0 = R̄s (t)− βR̄0 (13)

R̄s = RTS (t)− βRDT (t) (14)

D̄s =
[
(1− β2)(R̄s)2 − (β · R̄s)2

] 1
2 (15)

R̄0 = (R̄0R̄0)
1
2 = γ2

{
D̄s − β · R̄s

}
(16)

βi ≡ wi/c , γ ≡ (1− β2)−
1
2 (17)

and with (RTS(t), RDT (t)) given by equations (6) and (7). Note that all the
quantities in equations (10) to (16) and thusAT (t) are functions of time that
vary slowly compared to exp(−iωst).
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These results are quite complicated, primarily because of retardation ef-
fects. Only when β → 0 are they simple. Then we get

R0 ≈ Rs ≈ RTS , D̄s ≈ R̄s ≈ RTS , (18)

Ki ≈ ks(R̂DTi − R̂TSi ) , and (19)

AT = −Pe(k2
sa
′/4πT0)

(
cos θ

RDTRTS

)
T̃ (K) exp[iks(RTS +RDT )] , (20)

where θ is the scattering angle, given here by

cos θ = R̂DT · R̂TS . (21)

These quantities are still weakly time dependent for β <<< 1. If we define

k̂s = R̂TS , Apw = −Pea′(RTS)−1 exp(ikRTS) ,

r̂ ≡ R̂DT , r = RDT ,
(22)

then the amplitude AT of equation (20) has the form

AT = Apw

(
exp(iksr)

r

) (
k2
s T̃ (K)
4πT0

)
cos θ , (23)

with

cos θ = k̂s · r̂ , K = ks(r̂− k̂s) . (24)

This is exactly the form of the Monin [3] result for temperature scatter-
ing from stationary turbulence, where Apw is the amplitude of an incident
plane wave traveling in direction k̂s.

From equation (A-81), the contribution pvas(t) scattered by the solenoidal
turbulent velocity field of the turbule is

pvas(t) = Av(t) exp(−iωst) + c.c. , (25)

where the complex amplitude Av(t) is defined by

Av(t) ≡
(
−k

2
sPea′

2πcγ2

) {
R̄3

0
( ̂̄R0 · R̂DT )(R̂DT · �v (K))

(D̄s)4 RDT

}
exp[iks(R̄0 +RDT )] , (26)

with
�
v (K) the spatial FFT of the turbule velocity field v̄(r̄− b̄), stationary

in the comoving (barred) frame, given by

�
v (K) ≡

∫
d3ξ exp(−iK · ξ)v̄(ξ) . (27)

For β → 0,Av(t) also reduces to the Monin result for scattering by turbulent
velocity fluctuations.

Equations (9) and (26), with the accompanying equations (10) to (17) and
(27), are used in the computer algorithm described in appendix B. To ob-

tain T̃ (K) and
�
v (K) specifically, we must use a specific turbule model

described in the following section.
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2.1.3 Turbule Model

For convenience, we use Gaussian envelopes and spherical symmetry, as in
a past paper [1]. A temperature turbule of scale length or “size” a, fixed in
the comoving (barred) frame, is written

T̄ (r̄− b̄) = ∆Ta exp
[
−(r̄− b̄)2

a2

]
, (28)

and a velocity turbule of size a is written

v̄(r̄− b̄) = [Ωa × (r̄− b̄)] exp

[
−(r̄− b̄)2

a2

]
. (29)

Note that Ωa is an angular velocity, and v̄ is solenoidal.

The amplitudes (∆Ta, Ωa = |Ωa|) are scaled with a, as in a previous paper
[1]. Specifically, we designate a1 as the size of the largest turbule to be used,
the outer scale length for this problem, and choose values for

∆T1

T0

≡ ΓT ,
Ω1a1

c
≡ Γv . (30)

Typical values are ΓT ≈ Γv ≈ 0.01. Here, Ω1 ≡ Ωa1 , ∆T1 ≡ ∆Ta1 . (We must
also choose the direction Ω̂a.) Then, from the previous paper [1] and also
in accordance with conventional models [2], we choose for any size a

∆Ta = (a/a1)1/3∆T1 , Ωaa = (a/a1)
1/3Ω1a1 , (31)

or

Ωa = (a1/a)
2/3Ω1 . (32)

From the definitions of equations (10) and (27) and from equations (28) and
(29), we get the same expressions as in appendix A,

T̃ (K) = π3/2 a3 ∆Ta exp
[−K2a2

4

]
, (33)

�
v (K) =

−i
2
π3/2a5Ωa ×K exp

[−K2a2

4

]
. (34)

Note that there is no velocity scattering if Ωa ‖ K .

Consider the lowest-order approximation for the scattering vector K, i.e.,
just like equation (19):

K(t) ≈ ks(R̂DT (t)− R̂TS(t)) . (35)

This is a good approximation if β � 1. Then

K2 = 2k2
s(1− cos θ(t)) = 4k2

s sin2

(
θ(t)
2

)
, (36)

with the scattering angle θ(t) defined by equation (21). Therefore, if ksa� 1,

then T̃ (K) and
�
v (K) are extremely small unless θ is near 0◦, so the scatter-

ing is negligible at large angles. But for ksa � 1, the Gaussian envelope in
equations (33) and (34) is essentially unity for all scattering angles, so back-
ward scattering is comparable to near forward scattering in magnitude.
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2.1.4 Spectral Broadening

We note that both AT (t) and Av(t) contain the factor

exp{−iωs[t− (R̄0(t) +RDT (t))/c]} ≡ exp(−iΦ(t)) , (37)

where the equality defines the phase Φ. Consider any time t = t0 . Then
write for t near t0

Φ(t) ≈ Φ(t0) + (Φ̇(t0))(t− t0) + neglect , (38)

where we can neglect terms of higher order in (t − t0) if R̄0(t) and RDT (t)
are “slowly varying,” which is the case for β � 1. Thus Φ̇(t0) is the effective
angular frequency ω(t0) at time t0 . Since t0 is any time, we have

ω(t) = ωs[1−
1
c
( ˙̄R0(t) + ṘDT (t0))] . (39)

When equations (12), (3), and (13) to (17) are used, obtaining an expression
for ω(t) valid to first order in β is very simple. Since c−1 times the time
derivative of any position vector or distance is proportional to β, then for
equations (13) to (17), we may put, to order β,

˙̄R0(t) ≈ ṘTS(t) = dt(RTS ·RTS)1/2 = R̂TS · ṘTS = w · R̂TS (40)

ṘDT (t) = dt(RDT ·RDT )1/2 = R̂DT · ṘDT = −w · R̂DT . (41)

Therefore, to order β,

ω(t) ≈ ωs[1 + β · (R̂DT (t)− R̂TS(t))] . (42)

Note that this can be written in terms of the approximate scattering vector
K(t) of equation (35) as

ω(t) = ωs + w ·K(t) . (43)

This relation is actually correct for the exact K(t) given by equation (11).

From equations (32) or (33), (36), and (33) and (34), and from figures 1(a)
and 1(b), it is evident that small turbules may produce much wider spectral
broadening than large ones. This is because the Gaussian envelope cuts off
the scattering from large turbules when |w · K| is “large,” but does not
do so for small turbules. Thus from small turbules, we can get appreciable
backscattering, so the relative frequency shift w ·Kωs may vary from zero
to ±2β, while for large turbules, |w ·K|ωs � 2β for any scattering angles
that produce appreciable scattering.

It should be emphasized that this general behavior is not peculiar to a tur-
bule model, or to Gaussian model turbules, but is common for any model
of turbulence that contains both large and small length scales and is frozen
in a comoving frame, provided only that the source and detector are in the
near-field region of the complete scattering volume Vs. This applies to the
scenarios of interest in this work. If (and only if) the source and detector
are both in the far-field region of Vs at all times, then the conventional re-
sult ensues that moving frozen turbulence may produce only a frequency
shift but no broadening [2].

In appendix C, a different simple derivation of equation (42) is provided.
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2.2 Multiturbule Model

This section contains a summary description of the scheme used later in
the report for populating the scattering volume with turbules. Rather than
having a continuous distribution of sizes for the turbule size parameter a, a
discrete set of sizes an will be selected. For each size class index n, a cubical
cell containing one turbule is defined whose linear dimension dn is an ap-
propriate multiple of an. Suppose that the time interval for which data are
desired is T and that the average wind velocity is w. Then an approximate
scattering volume length L is equal to wT . A tube is defined to be a re-
gion of space consisting of a sufficient number of cellsMn aligned along the
wind direction so that the total length of the tube isL or greater. The several
tubes for each size class n are stacked laterally and vertically to overspread
the scattering volume. For this discussion, consider that an+1/an = 1/2.
Then dn+1/dn = 1/2 and Mn+1/Mn = 2. The number of tubes for class
n+ 1 is four times the number for class n.

2.2.1 General Population

Our interest is in the scattered acoustic pressure produced by a multitur-
bule model that contains appropriate numbers of turbules of many sizes,
from the largest (outer scale) a1 to the smallest (inner scale) aNs , with Ns
different scales included. As shown by Goedecke et al [1], if we define the
packing fraction

φ = naa3 , (44)

where na is the number density of turbules of size a, then φ must be inde-
pendent of a so that the energy transfer rate per unit mass in a Kolmogorov
cascade can be scale-independent as well. On average, one turbule of size
a is somewhere in each cubical cell of size da, where

da = n−1/3
a = a/φ1/3 . (45)

For a typical φ ≈ 10−3 , da = 10a .

If we had unlimited computer resources, we could populate a defined scat-
tering volume Vs with turbules of different sizes (one “randomly” located
in each cell for each size) and simply add up the (AT (t), Av(t)) from each.
This is actually what we do for the larger turbules with ksa � 1. But if there
are perhaps 100 turbules with a = 2 m in Vs, then for a = 0.02 m = 2 cm, ac-
cording to equation (44), there will be (100)(2/0.02)3 = 108 turbules, a truly
formidable number.

2.2.2 Time-Shift Algorithm

Fortunately, there seems to be a good approximate way to handle the mul-
titude of smaller turbules that reduces the calculation time significantly.
Imagine two identical turbules, 1 and 2, more or less in-line along the wind
direction, chosen to be the x-direction. That is, let the centers of their two
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cells have coordinates (b̄(1)cx , b̄(1)cy , b̄(1)cz ) and (b̄(2)cx , b̄(1)cy , b̄(1)cz ); i.e., their cells are
in-line with the wind.

Now, consider equation (9) for AT(1)(t), from turbule 1, and assume that the
source and detector are always in the radiation zone of a comoving cell of
side d = a/φ1/3 in which the turbule is located. This implies RDT(1) (t) and
RTS(1) (t) � (d, λ, d2/λ), whichever is greater, at all (or most) times. For such

cases, vectors such as (RTS(1), . . . ) can be replaced by (RTS(1)
c , . . . ), the vec-

tors to the center of the cell, except in the factor exp[iks(R̄(1)
0

+ RDT (1))]. In
this factor, we may write

exp[iks(R̄(1)
0

+RDT (1))] ≈ exp[iks(R̄
(1)
0c +RDT (1)

c )] exp(−iK(1)
c · η1) , (46)

where η1 is the displacement of the center of turbule 1 from its cell center.
So we get

AT(1)(t) = AT(1)(t) exp(−iK(1)
c (t) · η1) , (47)

where from equations (9) and (46), we have

AT(1)(t) ≡ −Pe(k2′
s a/4πT00γ

2)[(R̄(1)
0c )2/(D̄s(1)c )3RDT (1)

c ]

×( ̂̄R(1)

0c · R̂DT (1)
c )T̃ 0(K

(1)
c ) exp[iks(R

(1)
0c +RDT (1)

c )]. (48)

That is,AT(1)(t) is the oldAT(1)(t) but calculated with vectors to the cell center

times the phase factor exp[iks(R
(1)
0c +RDT (1)

c )].

Now, for turbule 2, clearly (AT(2)(t),K
(2)
c (t)) are simply time-shifted from

(AT(1)(t),K
(1)
c (t)). That is, we have

AT(2)(t) = AT(1)(t+ τ2) , K(2)
c (t) = K(1)

c (t+ τ2) , (49)

where τ2 ≡ w−1(b̄(2)cx − b̄(1)cx ). For example, suppose turbule 2 is one cell
ahead of turbule 1, so that b(2)cx − b(1)cx = d. Then τ2 = d/w, so AT(2)(t) is just
like AT(1)(t), but occurs earlier.

Thus, the time-shift algorithm for a whole tube of M turbules of a given
size, with cell centers equally spaced by d along the wind direction, is
obviously

ATtube(t) =
M∑
�=1

AT(1)(t+ τ�) exp[−iK(1)
c (t+ τ�) · η�] , (50)

where

τ� = w−1(b̄(�)cx − b̄(1)cx ) = ()− 1)(d/w) , (51)

and η� is chosen “randomly” for each ); i.e., −d/4 ≤ (η�x, η�y, η�z) ≤ d/4,
with uniform independent probabilities. So, for a given tube, we need to

9



compute the complicated functions (AT(1)(t), K(1)
c (t)) only once; then, for

each turbule ) in the tube, we choose an η� and compute

AT(�)(t− τ�) = AT(1)(t) exp(−K(1)
c (t) · η�) , (52)

then simply time-shift this to get AT(�)(t), and add that to the accumulated
ATtube(t).

By comparing with direct computation of the ATtube(t) for the same tube
and using the full equations (9) to (16) for each turbule with its center
at the same set of random locations as η� from above, we found that for
νs = 500 Hz, the time-shift algorithm is a good approximation for d �
4 m. However, the algorithm is not as good for d ≥ 8 m, with RDTc and
RTSc � 10 m minimum but actually� 100 m during the times of largest sig-
nal production. Since a direct computation involves ∼100 operations per
turbule and a time-shift of only ∼5 operations, the computing time advan-
tage of the time-shift algorithm is major.

These same considerations apply for the Av(t) of equation (26), except that
we need a separate Ω̂ for each turbule. For any turbule, we may write in
general

Av(t) = Ω̂ ·Bv(t) , (53)

where from equations (26) and (34), we have

Bv(t) = −
(
iπ1/2a5ΩPea′

4cγ2

) (
R̄3

0
( ̂̄R0 · R̂DT )

(D̄s)4RDT

)
exp(−K2a2/4) exp[iks(R̄0 +RDT )](R̂DT ×K) .

(54)

The time-shift algorithm for a tube ofM turbules along the wind is now

Avtube(t) =
m∑
�=1

Ω̂� ·Bv(1)(c) (t+ τ�) exp[−iK(1)
c (t+ τ�) · η�] , (55)

where (Bv(1)(c) , K
(1)
c (t)) are calculated with vectors to the center of the cell

containing and comoving with turbule 1. We calculate the same way as for
ATtube(t), except that we must choose an Ω̂� as well as an η� for each turbule.

2.3 Results

Many of the theoretical results are presented and discussed in the previous
section and in appendixes A to C, so we limit this section primarily to pre-
senting and discussing graphs that illustrate some of the most interesting
predictions of the computer code (Slow Eddy) that was developed on the
basis of the theoretical results. However, we will also show how the theory
easily predicts the major features of these computational results.

10



For all the following results, the detector was placed at (−150, 0, 0) m and
the source at (150, 0, 10) m, and the wind was chosen with components
(3.1, 0, 0) m/s. Thus, the primed and unprimed ground-fixed frames de-
scribed in section 2.1.1 and discussed in appendix B were the same, and
the wind velocity was blowing from the detector toward the source, in the
(+x) direction. The total time T was 24 s, 0 ≤ t < T , tube length was
L = wT = 756.4 m centered at the origin, the time steps ∆t were 0.0403 s,
and the total number of points used in the calculation was N = 6048. (The
point n = 6049 ↔ t = T is “equivalent” to t = 0 because of the inher-
ent periodicity of the discrete FFT.) The adiabatic sound speed was taken
to be c = 340 m/s, corresponding to an ambient temperature T0 ≈ 15 ◦C
≈ 288 K ≈ 60 ◦F. For multiturbule computations, each turbule angular
velocity unit vector was generally chosen to have uniform random distri-
bution in 4π solid angle, independently of other turbules. This orientation
distribution produces a model of isotropic turbulence, as was discussed in
another paper [1]. The ∆Ta in the scattering volume Vs were generally cho-
sen to have the same sign (positive) because temperature turbules are air
pockets warmer than ambient that have risen from the ground because of
buoyancy forces, such as those over a paved runway that was used in the
relevant experiment. Over a larger volume, the mean ∆T probably should
be zero. In the following results, one calculation was made with each tur-
bule ∆T either > 0 or < 0 with equal probability to contrast the results of
the different conditions. Also, some calculations were made with the an-
gular velocity vectors of the larger turbules all in the +y-direction, for the
same reason.

The ratio of cell size to turbule size was chosen to be d/a = 8, yielding
a packing fraction φ = 1.95 × 10−3. The number of sizes in the cascade
was chosen to be Ns = 6, and the (largest, smallest) turbule sizes (a1 , aNs )
were chosen as (1.5 m, 0.046825 m), respectively. Thus the parameter Nd
of equation (B-18) was equal to 2 (whereby µ = ln 2), such that each suc-
cessively smaller size was half the previous size. The relative fluctuation
strengths (∆T1/T0 ≡ ΓT ,Ω1a1/c ≡ Γv) of equation (30) were chosen as
(ΓT = 0.013,Γv = 0.027). From our previous paper [1] or equation (B-17)
of this report, these values yield C2

v = 0.088 m4/3/s2, C2
T

= 0.044 K2/m2/3.
These values are in good agreement with those given by Brown and Clif-
ford [4]. Also, this value of C2

v was inferred∗ from wind data that were
measured, along with the time-dependent acoustic pressure received by
many different detectors, during an experiment by Galindo and Havelock
[5]. All the numerical values chosen in this report are supposed to provide
a good approximation to those that existed in that experiment. (As men-
tioned earlier, a main objective of this work is to determine whether a real-
istic model of acoustic scattering by turbulence that is frozen in a frame and
comoving with a wind can possibly simulate actual experimental results.)

Using these values of the input parameters and the method and computer
code described in this subsection and in appendix B, we calculated total

∗D. K. Wilson of ARL computed this value.
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time-dependent complex acoustic pressure amplitudes (AT (t), Av(t)) scat-
tered by individual turbules, tubes of turbules, and all tubes of turbules in
several different scattering volumes and then Fourier transformed to get
the spectra (ÃT (ω), Ãv(ω)). For convenience, each (AT , Av) of equations (9)
and (26) was “normalized” by division by the factorPe with a′ = 1 m. Thus,
Pe is now the pressure amplitude of the source wave at a distance a′ = 1 m
from the source in a still atmosphere. In what follows, the (AT , Av) are the
normalized ones, which are dimensionless.

In figure 2, we plot the real and imaginary parts and the magnitudes of
(AT (t), Av(t)), respectively, for a single turbule with a = a1 = 1.5 m,
with b̄x = −L/2, b̄y = 0, b̄z = 20 m. Here, b̄z = 20 m corresponds to
an above-ground base height zb = 14 m, plus d1/2 = 6 m, half the side
of a cubical cell having d1 = 8a1 . In figure 3, we plot the magnitudes of
the FFTs ÃT (ω) and Ãv(ω). One can easily understand from equation (33)
why the pulse in figure 2 has a fairly narrow width in time: The Gaus-
sian envelope rapidly kills the signal as the scattering angle increases, since
ksa1 ≈ 13.9. The frequency width can be obtained easily from equation (42),
ω(t) ≈ ωs[1+β ·(R̂DT (t)−R̂TS(t))] . That is, calculate or obtain from figure

Figure 2. Pressure signal
amplitude scattered by
(a) temperature and
(b) velocity fluctuations
for one 1.5-m turbule.
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2 the two times (t1 , t2) at which the time-dependent magnitudes | A(t) | are
perhaps 5 percent oftheir maximum values and find R̂DT and R̂TS at these
times. Then verify from figure 3 that | ω(t1) − ω(t2) | is a good estimate of
the (angular) frequency width of the Ã(ω). This calculation works because
the complete frequency range νs(1− 2β) to νs(1 + 2β) is “scanned” by any
turbule, but only a small part of it is manifested in the scattered waves from
large turbules.

In figures 4 and 5, we repeat the presentations of figures 2 and 3, respec-
tively, but for a single small turbule of size a6 = 4.6875 cm, with the same
(b̄x, b̄y, b̄z). For this size turbule, (ksa6)

2 = 0.188, so the Gaussian envelope
of the A(t) is almost unity for all scattering angles. Therefore, each A(t) is
nonzero over the total time duration, and the frequency width extends to
almost the maximum possible, ±2βνs, obtainable by backscattering from
equation (42). Note also that each Ã(ω) goes to zero at frequencies ν+ =
4.3 Hz, ν− = −4.2 Hz. Again, this is easily understood from equations (9),
(26), and (42): The time-dependent amplitude A(t) is zero approximately
when R̂DT · R̂TS = cos θ = 0 (to lowest order in β). From figure 3, ob-
tain the times t3 , t4 at which this is true, and then use equation (42) to get
ω(t3) and ω(t4); these agree quite well (within 5–10%) with the frequencies
ν±. (The algebraic results are very sensitive to (t3 , t4) values, and the com-
puter algorithm contains higher order terms in β that slightly influence the
results.) Also note the asymmetry of the A(t) and Ã(ω); this is due to the
source height being different from the detector height, in this geometry.

Figures 6 to 9 contrast the effects of randomness versus regularity in turbule
center locations for many turbules. In figure 6, we present |Av(t)| for a tube
of turbules with a = 0.75 m, with all angular velocities in the y-direction
and each turbule center at the center of its comoving cell of side length
da = 8a = 6 m. This tube forms a moving “diffraction grating.” The tube
centerline is (b̄y = 0, b̄z = 20 m), and there are Ma = L/da = 126 turbules
contributing at any time. (In all calculations done for tubes, each cell in a

Figure 3. Frequency
spectra due to
temperature and
velocity fluctuations for
one 1.5-m turbule.
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Figure 4. Pressure signal
amplitude scattered by
(a) temperature and
(b) velocity fluctuations
for one 4.7-cm turbule.
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Figure 5. Signal
frequency spectra
scattered by
temperature and
velocity fluctuations for
one 4.75-cm turbule.
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fixed tube of total length L is kept filled; i.e., as a turbule is leaving at L/2,
another is entering at−L/2. This ensures steady-state conditions.) The time
dependence is extremely regular, as one would expect.

Figure 7 is for the same conditions as figure 6, except that each turbule
center is randomly placed inside its comoving cell, with no correlations
among placements of different turbules. The randomness consists of uni-
form uncorrelated probabilities of a turbule center’s (x, y, z) locations being
between −d/4 and d/4 from its comoving cell center. It is interesting (but
totally expected) that this randomness produces extremely large relative
fluctuations.

Figure 6. Pressure signal
amplitude scattered by
velocity fluctuations in
one tube of 0.75-m
turbules, equally
spaced, with spins in
same direction.
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Figure 7. Pressure signal
amplitude scattered by
velocity fluctuations for
one tube of 0.75-m
turbules, randomly
spaced, with spins in
same direction.
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In figures 8 and 9, we plot the magnitudes of the FFTs for the conditions of
figures 6 and 7, respectively, on a semilog plot for good visibility. In figure
8, the principal maxima are striking; they are spaced just as they should
be, i.e., at frequencies νq = qMa/T ≈ (q)(0.516) Hz, where q is an inte-
ger. There should be exactly zero contribution for other frequencies, for
the discrete FFT. The principal maxima diminish rapidly as |ν| increases,
probably because of the Gaussian envelope of a single turbule. (The pic-
ture is analogous to a multiple-slit interference pattern as modified by the
single-slit diffraction pattern, in optics.) In figure 9, the randomness in tur-
bule placement yields a jagged continuous spectrum. Both figures 8 and
9 display a remarkable straight-line behavior, which corresponds on these
semilog plots to an exponential spectral envelope, exp(−|ν|τa), where τa is
a constant with the dimension of time that most likely depends on the scale
length a. We have not yet been able to predict this behavior theoretically.

Figure 8. Signal
frequency spectrum
scattered by velocity
fluctuations for one
tube of 0.75-m turbules,
equally spaced, with
spins in same direction.
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Figure 9. Signal
frequency spectra
scattered by velocity
fluctuations for one
tube of 0.75-m turbules,
randomly spaced, with
spins in same direction.
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Figures 10 to 12 are intended to illustrate that the time-shift algorithm gives
results essentially the same as direct calculation. These figures are |ÃT (ω)|
for a tube of Ma = 504 turbules with a = 1.5/23 = 0.1875 m, with the
centerline as previously mentioned, with all ∆Ta > 0. Figure 10 is for reg-
ular placement (for reference), with the use of “either” the direct or the
time-shift calculation; i.e., the results are identical for regular placement
of the turbule centers at their cell centers initially. Figure 11 is for random
placements using the direct calculation. Figure 12 is for the “same” random
placements but using the time-shift calculation, which is eight times faster
than the direct method. Clearly the two methods produce substantially the
same results, although there are small differences, as there should be, be-
cause the time-shift method is not exact.

Figure 10. Signal
frequency spectrum
scattered by
temperature
fluctuations for one
tube of 0.19-m turbules,
equally spaced, using
direct method.
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Figure 11. Signal
frequency spectrum
scattered by
temperature
fluctuations for one
tube of 0.19-m turbules,
randomly spaced, using
direct method.
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Figure 12. Signal
frequency spectrum
scattered by
temperature
fluctuations for one
tube of 0.19-m turbules,
randomly spaced, using
time-shift method.
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Figures 13 and 14 illustrate the effects of random versus nonrandom angu-
lar velocity directions Ω̂ and temperature amplitude signs ∆T/|∆T |. They
are for a tube of Ma = 63 turbules with a = 1.5 m, with the centerline at
by = 6 m, bz = 20 m. Figure 13 plots |Ãv(ω)|; figure 13(a) is for all the Ω̂
in the y-direction, while figure 13(b) is for the Ω̂ chosen isotropically at
random. Figure 14 plots |ÃT (ω)|; figure 14(a) is for all ∆T > 0, while fig-
ure 14(b) is for sgn(∆T ) = ±1 with equal probability (this would make
T0 equal to the mean temperature in Vs). In each case, the turbule center
locations were randomized with the same set of random numbers, so dif-
ferences in the comparable graphs must be caused by the different choices
of Ω̂ or sgn(∆T ). What is remarkable is that the differences are not large.
This can be understood by noting that, for example, changing the sign of
∆T/|∆T | for a given turbule introduces a phase change of π in its scat-
tered wave, which could have been done equally well by moving its center
about a half wavelength. So, in general, randomization of Ω̂ and ∆T/|∆T |
is nearly equivalent to nonrandomization with a little more “freedom of
movement” of the turbule centers.
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Figure 13. Signal
frequency spectrum
scattered by velocity
fluctuations for one
tube of 1.5-m turbules,
randomly spaced, with
(a) spins in same
direction and
(b) random spin
directions.
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Figure 14. Signal
frequency spectrum
scattered by
temperature
fluctuations for one
tube of 1.5-m turbules,
randomly spaced, (a) all
with ΓT > 0 and (b)
with ±ΓT equally likely.
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Figures 15 to 17 are sums over contributions of many turbules of all sizes
used, i.e., aα = (1.5, 0.75, 0.375, 0.1875, 0.09375, 0.046875) m for α = (1,
..., Ns = 6), respectively. The amplitudes (Ωa, |∆Ta|) were scaled as dis-
cussed earlier, so these calculations are an attempt to numerically represent
realistic, isotropic, homogeneous, fully developed turbulence by a turbule
model, following the formulas by Goedecke and Auvermann [1]. This at-
tempt is a compromise with the computing power of a PC with a Pentium II
233 MHz processor. We really should have included both larger and smaller
turbules, plus many more different sizes in between. But what we did al-
ready required ∼4.25 hr per large tube (d1 = 8a1 = 12 m), corresponding
to 30 s per turbule, and this was only after we compromised further by
making a reasonable approximation for the smallest size a6 = 0.046875 m.
We randomly put only “one” such turbule instead of eight in each cell of
the next “larger” size, d5 = 8a5 = 0.75 m, and then we multiplied the re-
sult by eight. We checked this for a single tube of side length d5 versus the
“correct” method using turbules of scale a6 only, and the results were quite
close. Since so many such tubes are in one big tube ((d1/d5)2 = 256), the
total error induced by this economy should be quite small.

Figure 15 plots |ÃT (ω) + Ãv(ω)| for two big tubes with centerlines by =
± 6 m, bz = 20 m. Figure 16 does the same for two big tubes above those
of figure 15: i.e., by = ± 6 m, bz = 32 m. Figure 17 is the total frequency
spectrum from these four tubes. Note that the contributions from the higher
big tubes are significantly smaller, and that the general shapes of the plots
are essentially unchanged, so these shapes are established already by just
one or two tubes. The semilog plots clearly show the contributions of the
small turbules all the way to ±2βvs = ± 10 Hz.

0.6

0.5

0.4

0.3

0.2

0.1

0

Frequency (Hz)
–10 –5 0 5 10

1

0.1

0.01

0.001

0.0001

0.00001

Frequency (Hz)

–2 –1 0 1 2

(a) (b)

|A
|~ |A

|
~

Figure 15. (a) Total frequency spectrum due to temperature and velocity fluctua-
tions for two full tubes with sizes 1.5 m down to 4.7 cm. (b) Log plot of (a) from
±10 Hz.
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Figure 16. (a) Total frequency spectrum due to temperature and velocity fluctua-
tions for two full tubes located above the two tubes in figure 14, with sizes 1.5 m
down to 4.7 cm. (b) Log plot of (a) from ±10 Hz.
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Figure 17. (a) Total frequency spectrum due to temperature and velocity fluctua-
tions for all four full tubes from figure 14 and 15. (b) Log plot of (a) from ±10 Hz.
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Finally, figure 18 contrasts some experimental data with our model results.
Figure 18(a) is from a presentation by Auvermann and Goedecke [6]; the
jagged curve is the data. The central spike is about 101.56 Hz; this cor-
responds to ν = 0 in the previous spectral plots and in figure 18(b). The
ratio of the central spike height to the “mean” height at ν = 102 − 101.56
= 0.44 Hz is about 6/0.23 = 26. These data were for a source detector and
wind velocity scenario very similar (but not identical) to what we modeled.

Figure 18(b) is an expansion of our figure 17(a) along the abscissa to match
the total frequency width in figure 18(a). The model predictions are simi-
lar to the experimental results; e.g, the ratio of the central spike height (at
ν = 0) to the “mean” height at ν = 0.44 Hz is ≈0.52/0.02 = 26, in figure
18(b). But the jaggedness in the model results is not as great as in the exper-
imental results. In later investigations, it has been found that the jagged-
ness, defined as the mean frequency spacing of adjacent peaks and valleys
in the spectrum, is approximately equal to 3/T , where T is the duration of
the time signal. The model jaggedness agrees with the experimental jagged-
ness, if T is the same for both.

Figure 18. Comparison
of experimental data
with model: (a) Freq-
uency spectrum from
experiment and (b) freq-
uency spectrum from
figure 17(a).
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3. Conclusions and Recommendations

The theory developed in this work allows understanding of the spectral
broadening and shifting in an acoustic wave scattered from moving tur-
bulence on the basis of two simple general physical principles. The first
principle is that, even if the turbulence is frozen in a frame comoving with
a wind, spectral broadening occurs because the scattering angles and the
distances from source to turbulent eddies and from the eddies to the de-
tector are time-dependent. The analog in everyday experience is what you
hear when an approaching car’s horn is blowing at frequency νs and then
recedes while you are standing to one side of the car’s path: You actually
hear the whole Doppler-shifted frequency range, from νs(1+β) to νs(1−β),
as a function of time. (For scattered waves, the factors are 1±2β, where β =
(speed of object/speed of sound), to first order in β.)

The second principle is that large objects (compared to the wavelength)
scatter strongly but mainly in the near-forward direction, while small ob-
jects scatter weakly but nearly isotropically. Thus from large eddies, we get
only a small spectral width, while from small eddies, we get±2βνs but less
amplitude.

Of course, in actuality the turbulent flow in a frame comoving with the
mean wind is also time-dependent. But we have shown via these general
principles and a computer model that this time dependence is unneces-
sary to explain the general features of some observed acoustic data. This
is markedly in contrast to the conventional treatment of spectral broaden-
ing, which attributes all of spectral broadening to time dependence in the
comoving frame. In that treatment, the source and detector are assumed to
be in the far field of the whole turbulent scattering volume, so that, effec-
tively, scattering angles and distances are not time-dependent. This is an
unrealistic assumption for acoustics, where both the source and detector
are invariably in the near field of the scattering volume.

One of the approximations apparently made in the theory developed in this
report was the assumption of a “uniform” mean wind and a “uniform” am-
bient temperature. (The commonly used ambient temperature is taken as
the mean temperature in the scattering volume Vs; we did not so restrict our
ambient temperature.) But these may only be “apparent” approximations.
For example, suppose we define the mean wind as the time and space av-
eraged wind over the time of an experiment and over the whole scattering
volume from the ground up. Then of course it is by definition uniform and
constant, so “all” wind variations are part of the turbulent flow. This point
of view would introduce anisotropy and/or inhomogeneity in the turbu-
lent flow, which is easy to do in a turbule model. Also, suppose we define
the mean temperature as the same time and space average of the nona-
coustic temperature. Then all nonacoustic variations of temperature in Vs
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are part of the turbulence. For example, suppose we used thermometers to
“measure” a “mean temperature,” and found these readings to be a func-
tion of height only, in Vs; typically, they would decrease with height. We
could model this in terms of a constant ambient T0 , the average over height
of the thermometer readings, plus turbules whose amplitudes ∆T did not
cancel on average and depended on height in such a way as to reproduce
the thermometric results. This method would introduce inhomogeneity in
the turbulent temperature variations, and again this is easy to do with a
turbule model. These ideas may be worth further investigation. However,
this approach would not allow for the curved limiting ray paths that create
shadow zones in the source radiation patterns. This curvature is small and
was neglected in this work, because we treated scattered radiation only.

Another approximation that was made in the theory and thus in the de-
veloped code was that the source and detector are instantaneously in the
radiation zone of any turbule, i.e., that RTS and RDT are large compared to
the larger of (λ, a2/λ), at all times. This is not true at all times for all turbules
in realistic scenarios, in which a few of the turbules may actually intercept
the source and/or detector and in which a substantial fraction of the large
turbules spend some time close to the source and detector. The radiation
zone expressions were used as a compromise, because they yield the same
results as the conventional theory in the limit of β → 0. We expect that cor-
rections to this approximation would not alter the general character of the
total |Ã(ω)|, but this expectation should be checked in the future. The fully
correct theoretical expressions for the Born approximation scattered waves
in near-field regions of a turbule can be obtained for the general model
used, if we do not make the approximations mentioned just before equa-
tions (A-21), (A-37), and (A-52) and just after equations (A-38) and (A-39).
But then, the expressions for the waves are extremely complicated and dif-
ficult to work with, so much so that it seems unlikely a three-dimensional
model could be handled.

The computer code Slow Eddy developed in this work is not optimized.
It can model a three-dimensional problem only roughly on a PC and only
because the new time-shift algorithm is so much faster than direct compu-
tation. One improvement that might still be made in the code is to allow the
scattering volume to be different for each turbule size: The larger the tur-
bules, the smaller the volume needed. But a recipe for choosing the optimal
scattering volumes is not so easy to attain, because the choices depend on
virtually all the parameters of a scenario. It is probably best to experiment
with this code to help determine how to modify it to use scale-dependent
scattering volumes. Unfortunately, the effective volume needed increases
inversely with turbule size, so this would not help much in reducing run-
ning time.

Other facets of an experimental scenario are that source waves reflected
from the ground will be incident on the turbulence and that the source
and/or the detector may be anisotropic. The latter could be modeled by
suitable modifications of the computer code, along with some further
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theoretical development. The former would require substantially more the-
oretical development and code alterations. The general character of scat-
tered wave spectra may be altered appreciably by both effects.

Overall, the frequency spectra predicted by this model of time-dependent
turbulence seem to have the same general characteristics as some observed
spectra. How well this model applies to many different sets of experimental
results needs to be tested. If it seems to work fairly well, then quite likely, it
could be used to analyze acoustical remote sensing data with a view toward
inferring detailed information about atmospheric turbulence and/or wind
speeds.
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Appendix A. Theoretical Derivations

A-1 Geometry and Model

See figure 1 of the main report. In the derivation that follows—

t = clock time

x, y = horizontal coordinates, z = vertical coordinate

r = position vector

w = ambient wind velocity, uniform, constant

T0 = ambient temperature

p0 = ambient pressure

ρ0 = ambient mass density

RS ≡ s = source location

RD ≡ d = detector location

RT (t) = RT + wt ≡ b̄ + wt = location of turbule “center”

RTS ≡ RT (t)−RS

RDT ≡ RD −RT (t)

The DS or ground-fixed frame is the “unbarred ” frame (D,S = detector,
source). The T (barred) frame is comoving with the wind (T = turbule).
Their Cartesian coordinates are related by

x̄i = xi − wit, t̄ = t Galilean transformation. (A-1)

The total (temperature, pressure, mass density, and fluid velocity) fields in
the DS system are

T (r, t) = T0 + Tt(r, t) + Ta(r, t) (A-2)

p(r, t) = p0 + pt(r, t) + pa(r, t) (A-3)

ρ(r, t) = ρ0 + ρt(r, t) + ρa(r, t) (A-4)

v(r, t) = w + vt(r, t) + va(r, t) , (A-5)

where the subscripts (t, a) ≡ (turbulent, acoustic). In the T system, these
fields are

T (r̄, t̄ ) = T0 + T t(r̄, t) + T a(r̄, t) (A-6)

p̄(r̄, t̄ ) = p0 + p̄t(r̄, t) + p̄a(r̄, t) (A-7)

v̄(r̄, t̄ ) = v̄t(r̄, t) + v̄a(r̄, t) (A-8)

ρ̄(r̄, t̄ ) = ρ0 + ρ̄t(r̄, t) + ρ̄a(r̄, t) , (A-9)
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where

T (r̄, t̄ ) = Tt(r, t), . . . , v̄t(r̄, t) = vt(r, t)|r=r̄−wt (A-10)

and similarly for acoustic quantities.

We assume that the source emits uniformly in 4π and that the ground is
totally absorbing; i.e., we ignore ground reflections.

A-2 Acoustic Equations

In the barred (comoving) frame, the relevant acoustic equations are the
usual ones:

∂tv̄ai + ρ−1
0
∂̄ip̄a = −

(
T T /ρ0T0

)
∂̄ip̄a − v̄a∂̄v̄T i − v̄T∂̄v̄ai , (A-11)

∂tp̄a + γ
h
p0 ∂̄iv̄ai = −v̄T i∂̄ip̄a + Sa . (A-12)

The partial derivative symbols are ∂t = ∂/∂t and ∂i = ∂/∂xi and xi =
x, x2 = y, and x3 = z in the stationary frame. The ∂̄r, etc, are partial deriva-
tives in the comoving frame, where γ

h
is the ratio of specific heat at constant

pressure to the specific heat at constant volume.

In these equations, we have dropped terms in p̄T , since this is second order
in v̄T , and used the equation of state to put ρ̄T /ρ0 + T T /T0 = p̄T /ρ0 ≈ 0.
Also, we have included a scalar acoustic source function Sa to be chosen.
Note that the right-hand sides of these equations involve the turbulent tem-
perature and velocity fluctuations T T (r̄, t), v̄T i(r̄, t); in this work, we regard
them as stationary, i. e., T T (r̄), v̄T i(r̄) only, with no explicit time dependence
in the barred frame. They may be stochastic functions. Thus, in every de-
tail, the description of the turbulence and acoustics in the barred frame is
subjectively the same as in the standard description1 in any reference frame
with no wind.

The acoustic quantities in equation (A-11) and (A-12), the sum of the waves
created by the source and the waves scattered by the turbulence, are written
as

p̄a = p̄ae + p̄as , v̄ai = v̄aei + v̄asi ,

in the Born approximation where the subscript e stands for “external,” i.e.,
for the source waves that act as externally applied fields on the turbulence,
and the subscript s stands for “scattered,” representing waves scattered by
the turbulence.

A-3 Source Wave

The “external” acoustic pressure and velocity waves in the barred (T )
frame, generated by a scalar source, satisfy equations (A-11) and (A-12)
with

(
v̄T i, T T

)
= 0:

∂tp̄ae + γ
h
p0 ∂̄iv̄aei = Sa(r̄, t) (A-13a)

1V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, Keter,
Jerusalem (1971).
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∂tv̄aei + 1
ρ0
∂̄ip̄ae = 0 , (A-13b)

where Sa(r̄, t) is the source term. From equation (A-13b), we may put

v̄ae = ∂̄iΦ̄→ p̄ae = −ρ0∂tΦ̄ , (A-14)

where Φ̄ is a “velocity potential.” Then from equation (A-13a),

−ρ0∂
2
t Φ̄ + γ

h
p0∇

2Φ̄ = Sa .

Dividing by γ
h
p0 yields

(∇2 − 1
c2
∂2
t )Φ̄ = 1

ρ0c2
Sa , c2 ≡ γ

h
p0/ρ0 , (A-15)

where c is the adiabatic sound speed.

In the unbarred frame, the monochromatic isotropic point source is located
at r = RS = s and has frequency νs = ωs/2π:

Sa(r, t) = A′δ(r− s) exp(−iωst) + c.c. , (A-16)

where A′ is an amplitude and δ(r) is the Dirac delta. So, using equation
(A-1),

S̄a(r̄, t) = A′δ(r̄− s + wt) exp(−iωst) + c.c. (A-17)

The Green function solution of equation (A-15) is

Φ̄ = − A
′

ρ0c
2

exp(−iωst)
4π

∫
d3r̄′

1
R
δ(r̄′ − s + wt− βR) exp(iksR̄) + c.c. ,

(A-18)

where β ≡ w/c, and

R ≡ r̄− r̄′. (A-19)

We note that, with η ≡ r̄′ − s + wt− βR,

∂

∂r̄i
δ(r̄′ − s + wt− βR) =

∂δ

∂η

∂η
∂r̄i

=
(
∂δ

∂s
β

)
R̂i (A-20)

∂tδ(r̄′ − s + wt− βR) =
∂δ

∂η

∂η
∂t

= −c
(
∂δ

∂s
β

)
.

Also, we neglect ∂̄i
(
1/R

)
= −R̂i/R2 compared to (1/R) iks∂iRi = iksR̂i/R ,

since we will have ksR� 1 always. So we have from equations (A-14), (A-
18), and (A-20)

p̄ae(r̄, t) = ρ0c (iks + β · ∇s) Φ̄ + c.c. , (A-21)

v̄aei(r̄, t) = (iks + β · ∇s)U i + c.c. , (A-22)
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where

Φ̄ ≡ − A′
4πρ0c

2

∫
d3r̄′

1
R̄
δ(r̄′ − s + wt− βR) exp(iksR̄) exp(−iωst) , (A-23)

U i ≡ −
A′

4πρ0c
2

∫
d3r̄′

R̂i

R
δ(r̄′ − s + wt− βR) exp(iksR̄) exp(−iωst) . (A-24)

The integrals in equations (A-23) and (A-24) can be done. Transform the
variables by

ηi = r̄′i − si + wit− βiR . (A-25)

Then

∂ηi
∂r̄′

= δi + βiR̂ , since
∂R

∂r̄′
= −∂R

∂r̄
= −R̂j . (A-26)

So the Jacobian is

J
( η
r′

)
= 1 + β · R̂ . (A-27)

Then the integrals involve δ(η), so we get

Φ̄ = − A′
4πρ0c

2

exp(−iωst)
R+ β ·R

exp(iksR), U i = R̂iΦ̄ . (A-28)

Here, from equation (A-25)

R = r̄− r̄′ = r̄− [η + s−wt+ βR]η=0 ≡ Rs − βR , (A-29)

where

Rs ≡ r̄− s + wt = r̄− s̄(t) (A-30)

is the instantaneous vector from the source to the observation point r̄. Then
taking R ·R from equation (A-29) yields

R
2 =

(
R
s)2 − 2β ·RsR+ β2R

2
, or

(
1− β2

)
R

2 + 2β ·RsR− (Rs)2 = 0 .

The solution is

R = γ2

{
−β ·Rs +

√(
1− β2

) (
R
s)2

+
(
β ·Rs

)2
}
, (A-31)

where

γ2 =
(
1− β2

)−1
, as in relativity. (A-32)
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Then

β ·R = β ·Rs − β2R . (A-33)

So

R+ β ·R = R
γ2

+ β ·Rs =
√(

1− β2
) (
R
s)2

+
(
β ·Rs

)2 ≡ Ds. (A-34)

Thus from equation (A-28),

Φ̄ = − A′
4πρ0c

2

exp(−iωst) exp(iksR)
D
s , U i = − A′

4πρ0c
2

exp(−iωst) exp(iksR)
D
s R̂i . (A-35)

Then from equation (A-21),

p̄ae(r̄, t) = ρ0c
(
iks + βj

∂
∂sj

)
Φ̄ . (A-36)

But again we neglect (∂/∂s)(1/D
s) compared to (iks/D

s)(∂/∂s)R. Now
from equations (A-30) and (A-31),

R

[
∂R
∂si

= −δi − β
∂R

∂si

]
= R

∂R

∂si
= −Ri −

(
β ·R

) ∂R
∂si

,

so

∂R

∂si
=

−Ri
R+ β ·R

= −Ri
D
s . (A-37)

Thus from equations (A-35) and (A-36)

p̄ae(r̄, t) = − A
′

4πc
iks

(Ds)

(
1− β ·R

D
s

)
exp(−iωst) exp(iksR) + c.c. ,

but 1− (β ·R/Ds) = R/γ2D
s
, so finally

p̄ae(r̄, t) = − A
′

4πc
iksR

γ2(Ds)2
exp(−iωst) exp(iksR) + c.c. (A-38)

Again we have neglected (∂/∂si)(1/D
s) compared to (iks/D

s)(∂R/∂si),
since ksR and ksD

s � 1 always.

Then from equation (A-22), we get similarly

v̄aei(r̄, t) = − A′
4πρ0c

2

[
iksRi

γ2(Ds)2

]
exp(−iωst) exp(iksR) + c.c. (A-39)

We will also need (∂/∂r̄i)p̄ae(r̄, t̄).Again for the far-field condition ksR >>>
1, we have to find ∂R/∂r̄i. But just as in equation (A-37) and above,

∂R

∂r̄i
=
Ri

D
s . (A-40)
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Thus

∂p̄ae
∂r̄i

=
A′k2

s

4πcγ2

RRi

(Ds)3
exp(−iωst) exp(iksR) + c.c. (A-41)

As β → 0, Ds → R
s
,R→ Rs, γ → 1, and from equation (A-38), we get

p̄ae(r̄, t) = − A
′

4πc
iks

R
s exp(−iωst) exp(iksR

s) . (A-42)

Thus, we could put in general

−iksA′
4πc

≡ Pea′ , (A-43)

where a′ = length, and Pe is thus the pressure amplitude of the wave from
the source at a distance Rs = a′ from the source in a still atmosphere. This
relation identifies the significance of the arbitrary amplitude A′.

A-4 Scattered Waves

In Born approximation, the scattered waves satisfy equations (A-11) and
(A-12) with (p̄as, v̄asi) on the left-hand sides, but with (p̄ae, v̄aei) on the right-
hand sides. By combining these equations again to eliminate ∂̄iv̄asi and ap-
plying the usual solenoidal condition ∂̄iv̄T i = 0 on the turbulent velocity,
we get the Monin wave equation(

∂̄i∂̄i − c2∂2
t

)
p̄as = −T−1

0
∂̄i

(
T T ∂̄ip̄ae

)
− 2ρ0 ∂̄i∂̄

(
v̄Tv̄aei

)
, (A-44)

where two terms have canceled via equation (A-13a), because we assume
that S̄a ≡ 0,where the turbulence is nonzero.

We write

p̄as = p̄Tas + p̄vas , (A-45)

where p̄Tas is due to the turbulent temperature fluctuations T T , the first term
on the right-hand side of equation (A-44), and p̄vas is due to the turbulent
velocity fluctuations v̄T, the second term on the right-hand side. Then the
Green’s function solutions of equation (A-44) are

p̄Tas(r̄, t) =
∂

∂r̄i

(
1

4πT0

) ∫
d3r̄′

T
′(r̄′)
|̄r− r̄′|

[
∂p̄ae(r̄′, t′)

∂r̄′i

]
t′=t−|̄r−r̄′|/c

(A-46)

p̄vas(r̄, t) =
∂2

∂r̄i∂r̄

2ρ0

4π

∫
d3r̄′

v̄T (r̄′)
|̄r− r̄′| v̄aei

(
r̄′, t− |̄r− r̄′|/c

)
, (A-47)

where r̄ is now the observation point. After doing the indicated derivatives,
we will put r̄ = d−wt, d = RD, the detector location.
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A-5 Temperature Scattering

From equation (A-41), we have

[
∂p̄ae(r̄′, t′)

∂r̄′

]
t′=t−|̄r−r̄′|/c

=
A′k2

s

4πcγ2

RRi

(Ds)3
exp(iksR) exp(−iωst) exp(iksR

d) + c.c. , (A-48)

where

Rd = r̄− r̄′ (A-49)

Ri = R
s
i − βiR , R = γ2

{
−β ·Rs +Ds

}
(A-50)

D
s = R

s

√
(1− β2) +

(
β · R̂

s)2

, (A-51)

but now,

R
s
i = r̄′i − si + wit− βiR

d
. (A-52)

In the expression for p̄Tas of equation (A-46), when we take ∂/∂r̄i, we again
neglect (∂/∂r̄i)(1/R

d) compared to (iks/R
d)(∂/∂r̄i)

(
R̄+ R̄d

)
, since we will

have ksR̄d >>> 1 also.

Similarly, we neglect (∂/∂)[r̄i
(
RRi

)
/(Ds)3] also. So we will need

∂

∂r̄i
exp

[
iks

(
R̄+ R̄d

)]
= iks

∂

∂r̄i

(
R̄+ R̄d

)
exp

[
iks

(
R̄+ R̄d

)]
. (A-53)

But

∂R̄d

∂r̄i
= R̂

d

i ,
∂R̄

∂r̄i
=
∂R̄

∂R̄s

∂R̄s
∂r̄i

= −β
∂R̄

∂R̄s
R̂
d

i . (A-54)

Using equations (A-50), (A-51), and (A-54), we get

∂R̄

∂R̄s
=

1
D
s

{
R̄s − βR̄

}
=

R̄
D
s ,

whereby

∂

∂r̄i
(R̄+ R̄d) = R̂

d

i

(
D
s − β · R̄s + β2R̄

) R̂d
0
R̄

D
s . (A-55)

Then

∂

∂r̄i
exp

[
iks

(
R̄+ R̄d

)]
= iks

(
R̂
d

i R̄/D
s
)

exp
[
iks

(
R̄+ R̄d

)]
. (A-56)

So from equations (A-46), (A-56), (A-41), and (A-43), we get
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p̄Tas(r̄, t̄) = − ks
4πT0

Pea′
γ2

∫
d3r̄′

RRi

(Ds)3
R̂
d

i

R̄d
T
T(r̄′) exp[iks(R̄+ R̄d)] exp(−iωst) + c.c. (A-57)

Now, the turbule is localized at r̄′ = b̄; that is,

T
T(r̄′) = T (r̄′ − b̄) = T (ξ) . (A-58)

Define

ξ = r̄′ − b̄ , (A-59)

and change variables in the integrand. Discard the ξ terms in the R̄, R̄i,
etc, in the numerator and denominator of equation (A-57), because R̄d �
ξ, R̄ � ξ. But we must keep terms of order ξ in the exponent. That is, we
write

exp
[
iks

(
R̄+ R̄d

)]
≈ exp

[
iks

(
R̄+ R̄d

)]
ξ=0

exp(−iK · ξ) , (A-60)

and this defines the vector K. Then we put

r̄ = d−wt = d̄(t), r̄′ = b̄ + ξ . (A-61)

Then

R̄d = d− b−wt− ξ = RDT − ξ , (A-62)

R̄d = RDT − R̂DT · ξ , (A-63)

where

RDT ≡ d− b−wt . (A-64)

Now we need R as a Taylor series in ξ. Define R̄0 by

R̄ (ξ) = R̄0 + ξ ·∇bR̄ .

Here, R̄0 is
(
R

)
ξ=0

=
(
R

)
r̄′=b̄

, withR defined by equations (A-49) to (A-51).
After some algebra, the previous equations yield

Ki = ks

{
R̂DTi − ∂R̄0

∂b̄i

}
, (A-65)

where here

∂R̄0

∂b̄i
=

1
D
s

(
δi + R̂DTi β

)
R̄0 , (A-66)
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with

R̄s = R̄TS − βRDT , (A-67)

R̄0 = γ2
{
−β · R̄s +Ds

}
(A-68)

D
s =

[(
1− β2

) (
R̄s

)2 −
(
β · R̄s

)] 1
2
, (A-69)

R̄0i = R̄si − βiR̄0 . (A-70)

Then for p̄Tas (r̄ = d−wt, t) (at the detector), we get from equation (A-57)

p̄Tas(detector) = AT (t) exp(−iωst) + c.c. , (A-71)

where AT (t) is a complex-valued time-dependent amplitude,

AT (t) = − k2
s

4πT0

Pea′
γ2

R̄2
0

̂̄R0 ·R̂DT

(Ds)3RDT
exp[iks(R0 +RDT )]T̃ (K) , (A-72)

with K given by equation (A-65) and the other vectors by equations (A-66)

to (A-70). Here, T̃ (K) is the Fourier transform of T (ξ), given by

T̃ (K) ≡
∫
d3ξ exp(−iK · ξ)T (ξ) . (A-73)

This is accurate only if the source and detector are in the far-field region of
the turbule at any given instant. That is, we must haveRTS � λs,RTS � a,
and RTS � a2/λs, where a is the scale length of the turbule, λs = 2π/ks,
and similarly for RDT .

This is also valid to all orders of β; computationally, we should use it, al-
though probably only first order in β is needed, since we expect β � 0.05
in most realistic situations, except in strong storms. Note that β = 0.01
yields w = 3.4 m/s ≈ 7.6 mi/hr, so β ≤ 0.05 → w ≤ 38 mi/hr, reason-
able. But terms of order β2 in K and in exp[iks(R̄0 + RDT )] might shift
the phases noticeably, since ks = ωs/c = (2π)(500)/340 = 9.24 m−1. It
would be accurate enough to keep only first-order terms in β in the term
R̄0(R̄0 · R̂DT )/(D̄s)3RDT , but that would save very little time in numerical
computation, so the higher order terms are kept.

For simplicity, we use a Gaussian turbule,

T (ξ) = (∆T ) exp(−ξ2/a2) . (A-74)

The size or scale of this is a. Then the Fourier transform is

T̃ (K) = π3/2a3(∆T ) exp(−K2a2/4) . (A-75)
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Consider the result equation (A-72) in the β → 0 limit. Then

AT (t) =
[Pea′ exp(iksRTS)

RTS

]
︸ ︷︷ ︸

 −k2
s

4πT0

T̃ (K) cos θ︸ ︷︷ ︸
 [

exp(iksr)
r

]
︸ ︷︷ ︸ , (A-76)

effective incident fT (θ) spherical outgoing
plane wave amplitude scattering amplitude wave from scatterer

where we have defined RDT ≡ r, R̂DT = r̂, R̂TS = k̂s, and, for β → 0,

R0 = k̂RTS , D
s = RTS , R̂0 · R̂DT = cos θ ,

with θ the scattering angle. This ĀT (t) agrees with equation (2) found in
an earlier paper by Goedecke and Auvermann;2 it is the Monin result for
acoustic scattering by stationary turbulent temperature inhomogeneities.

The ∆T is the temperature fluctuation amplitude. For isotropic homoge-
neous turbulence, it scales with a as |∆Ta| = |∆T1 | (a/a1)

1/3, as discussed
in the main text. If T0 is the mean temperature T , then half the ∆Ta must
be taken negative and the other half positive, but with the same magnitude
for each a.

A-6 Velocity Scattering

From equations (A-39), (A-52), and (A-47), we see that we need

∂

∂r̄i∂r̄j
exp[iks(R̄+ R̄d)] .

Previously, we found in equation (A-56)

∂

∂r̄i
exp[iks(R̄+ R̄d)] = iks

(
R̂
d

i R̄/D
s
)

exp[iks(R̄+ R̄d)] .

We obtain the derivative of this here by once again neglecting ∂R̄/∂r̄ com-
pared to ksR ∂R/∂r̄, valid since ksR >>> 1. So we get

∂2

∂r̄i∂r̄
exp[iks(R̄+ R̄d)] ≈ −k2

sR̂
d

i R̂
d



R
2

(Ds)2
exp[iks(R̄+ R̄d)] . (A-77)

So from equations (A-47) and (A-39),

p̄vas(r̄, t̄) = −k2
s

1
2πc

∫
d3r̄

(
(Pea′)

R̄i
γ2(D̄s)2

) ̂̄Rdi ̂̄Rdj (
R̄2

)
(D̄s)2

(
R̄d

)
 (A-78)

× v̄tj(r̄′) exp[iks(R̄+ R̄d)] exp(−iωst) + c.c.

2G. H. Goedecke and H. J. Auvermann, “Acoustic scattering by atmospheric turbules,”
J. Acoust. Soc. Am. 102 (1997), pp 759–771.
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Now we put

v̄t(r̄′) ≡ v̄
(
r̄′ − b̄

)
≡ v̄ (ξ) , (A-79)

and we put ξ = 0 in the terms in the square bracket in the integrand. So

there ̂̄Rdi = ̂̄RDTi , Ri = R0i , R = R0 , etc, as in equations (A-66) to (A-70),
and also

exp[iks(R̄+ R̄d)] = exp[iks(R̄0 +RDT )] exp(−iK · ξ) (A-80)

as in equation (A-60), where K is given by equation (A-65). Therefore, for
r̄ = d̄−wt,

p̄vas (detector) =

{
− k

2
sPea′
2πc

(
R̄0

)3

γ2(Ds)4

(
R̂0 · R̂DT

) (
R̂DT · ˜̄v(K)

)
RDT

(A-81)

× exp[iks(R̄0 +RDT )]

}
exp(−iωst) + c.c.

≡ Av(t) exp[−iωst] + c.c. ,

where Av(t) is defined by the brace. Here,

˜̄v(K) ≡
∫
d3ξ exp(−iK · ξ)v̄ (ξ) . (A-82)

For simplicity, we use a Gaussian turbule

v̄ (ξ) = (Ω× ξ) exp(−ξ2/a2) (A-83)

as in Goedecke and Auvermann’s paper. Thus

˜̄v(K) = Ω× i∇K
∫
d3ξ exp(−iK · ξ) exp(−ξ2/a2)

= ia3π3/2Ω×∇K exp(−K2a2/4) or

˜̄v(K) = − ia
5π3/2Ω

2

(
Ω̂×K

)
exp(−K2a2/4) . (A-84)

For isotropic homogeneous turbulence, the energy transfer rate per unit
mass, ε, from one turbule size to the next satisfies

ε ∝
(
v2

)
(v/a) = (independent of a) ≈ Ω3a2 .

Thus Ω(a) scales with a as

Ω(a) = Ω(a1)
(
a1

a

)2/3

, a1 = amax = largest turbule scale length used. (A-85)

39



So we put

˜̄v(K) = − ia
5π3/2

2

(
Ω(a1)a

2/3
1

)
a13/3

(
Ω̂×K

)
exp(−K2a2/4) . (A-86)

In equation (A-84), Ω̂ is a “randomly” oriented unit vector. If the turbulence
is assumed to be isotropic, then Ω̂ has a uniform probability distribution in
4π; that is, if we write

Ω̂ = e1 sin θΩ cosφΩ + e2 sin θΩ sinφΩ + e3 cos θΩ ,

then

P
θ
(θΩ) dθΩ =

sin θΩdθΩ
2

→ P
θ
(θΩ) =

sin θΩ
2

,

P
φ
(φΩ) dφΩ =

dφΩ

2π
→ P

φ
(φΩ) =

1
2π
,

where
(
P
θ
(θΩ) , P

φ
(φΩ)

)
are the probability distributions of (θΩ , φΩ). If the

turbulence is not taken to be isotropic, then a spherically symmetric ro-
tating turbule model may not be adequate, and also Ω̂ is not uniformly
distributed in 4π.

Consider the result equation (A-81) in the limit β = 0. Insert b̄ = 0 = b.
Then R̂TS = k̂; R̂DT = r̂ = d̂; R̄0 = RTS ; Ds = RTS ; RDT = r; so we get

p̄vas =
[Pea′ exp(iksRTS)

RTS

]
︸ ︷︷ ︸

[
−k2
s

2πc
cos θ

(
r̂ · ˜̄v(K)

)
︸ ︷︷ ︸

] [
exp (iksr)

r

]
︸ ︷︷ ︸ , (A-87)

effective incident fv (θ, φ) spherical outgoing
plane wave amplitude scattering amplitude wave from scatterer

where here

K = ks
(
r̂− k̂

)
. (A-88)

Note that K · ˜̄v(K) = 0, since ∇ξ · v̄ (ξ) = 0,whereby r̂ · ˜̄v(K) = k̂ · ˜̄v(K)
for β = 0. This scattering amplitude is the same as equation (2) of Goedecke
and Auvermann’s paper. (This is the Monin result for scattering by turbu-
lent velocity fluctuations.)

We note that K · ˜̄v(K) = 0 in general, for any β, for the rotating sphere
model (see eq (A-82)). In fact, this must be true for any turbulent eddy that
satisfies ∇

ξ
· v̄ (ξ) = 0, because then∫
d3ξ exp(−iK · ξ)∇

ξ
· v̄ (ξ) = 0 = iK · ˜̄v(K) , (A-89)

where integration by parts and discard of the surface integral at “spatial
infinity” yield the second equality. This surface integral must vanish since
each turbule is localized. (We assume that turbules are “wholly contained”
in the scattering volume.)
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Appendix B. Computer Algorithm

B-1 Detector and Source Locations and Wind

The calculations are done in the “primed” coordinate system, which is
ground-fixed but in which the wind is along the x′ axis,

wx′ = w > 0, wy′ = wz′ = 0,

as in figure B-1. Define

xCM ≡ 1
2
(xD + xS),

yCM ≡ 1
2
(yD + yS).

The coordinate transformation is then

z′ = z,

x′ = (x− xCM) cosα+ (y − yCM) sinα,

y′ = −(x− xCM) sinα+ (y − yCM) cosα ,

(B-1)

and components of all position vectors are related in the same way. The
user inputs the Cartesian components of (RD,RS) and the magnitude w
and azimuthal angle α of the horizontal wind velocity w, in the “original”
(unprimed) frame. The algorithm calculates the primed components of all
vectors.

Figure B-1. “Primed”
coordinate system.
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B-2 Spectral Analysis

Consider the Fourier transform of equation (8) from the main report,

p̃Tas(ω) =
∫ ∞
−∞

dt exp(iωt)
[
AT (t) exp(−iωst) +AT∗(t) exp(iωst)

]
or

p̃Tas(ω) = ÃT (ω − ωs) + ÃT∗(ω + ωs) . (B-2)

Therefore, all we need to calculate is

ÃT (ω) ≡
∫ ∞
−∞

dt exp(iωt)AT (t) (B-3)

and then use equation (B-2) if we wish. But the spectral broadening and
shifting is all contained in ÃT (ω), and similarly for the relation of p̃vas(ω) to
Ãv(ω).

Since we use fast Fourier transform algorithms, we must establish the min-
imum number of time-series points needed for adequate accuracy. First,
equation (42) from the main report shows that the frequencies in ÃT (ω)
are given (approximately) by

[
νsβ ·

(
R̂DT (t)− R̂TS(t)

)]
. This varies from

a minimum of −2βνs to a maximum of 2βνs; so from the Nyquist criterion,
we need for ÃT (ω)

νmax =
(
(2∆t)−1

)
> 2βνs → ∆t < (4βνs)

−1 . (B-4)

For example, for νs = 500 Hz, β = 0.01, we need ∆t � 0.05 s → νmax �
10 Hz. The computer code uses an algorithm that yields these numbers for
νs = 500 Hz, β = 0.01. That is, it chooses

νmax = integer value ≥ 2βνs , ∆t = (2νmax)
−1 . (B-5)

Second, we need appropriate frequency resolution. We can obtain an esti-
mate of TR (the minimum total time duration of a measurement that en-
sures adequate frequency resolution) by examining the scattered wave am-
plitude associated with large turbules with ksa � 1. Consider figure B-2.
For what values x1 of x is the Gaussian reduced to perhaps e−4 of its maxi-
mum value? If ksa� 1, xwill be close to D/2. A little algebra yields

x1 =
D

2
± 1√

2ksa
(D2 + 4h2)3/2

Dh
. (B-6)

Now use equation (42) from the main report to obtain ν1 when x = D/2
and x = x1 . We easily get

ν1 ≡ νx=D/2 − νx=x1 =
√

2w
πa

(
D2 + 4h2

2Dh

)
. (B-7)
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Figure B-2. Estimating
minimum measurement
time duration.
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Essentially, only −ν1 � ν � ν1 will be in the Fourier transforms of the
amplitudes A(t).

As w/a gets smaller, so does ν1 . The quantityD2 + 4h2/2Dh has minimum
value 2 for h = D/2. So

(ν1)min =
√

2wmin

πamax
. (B-8)

Adequate frequency resolution requires perhaps ∆ν ≡ T−1
R
≤ 10−1 (ν1)min.

We suppose that amax = 10 m, wmin = 1 m/s. Then

TR � 10/ (ν1)min =
10πamax√

2wmin
≈ 200 s . (B-9)

Independently of this, we would like the total time T to be long enough to
contain almost all the scattered pulse from one turbule that passes “sym-
metrically” over the source/detector. For small turbules, the scattered pulse
amplitudes are approximately proportional to

(
RDTRTS

)−1. For source and
detector positions both near the ground and a turbule passing directly over-
head, as in figure B-3, the scattered amplitude is essentially a maximum
when the turbule is at position 2, proportional to R−2

min, where

Rmin =
(
(D/2)2 + h2

) 1
2
. (B-10)

At positions 1 and 3, the amplitude is proportional to R−2, where

R2 ≡
(
(R1 +D/2)2 + h2

) 1
2
(
(R1 +D)2 + h2

) 1
2 . (B-11)

For most scenarios, h� D for turbules of interest, so we could neglect h in
equations (B-10) and (B-11). Then we could require that we limit the length
of the scattering volume along the wind direction (which is along +x in this
simple analysis) by requiring R2 � 16R2

min; this would include all signals
within 6 percent of the maximum from a turbule that starts at x = −R1 and
travels the total distance 2R1 +D in time T . For h ≈ 0, this yields

(R1 +D) � 2D → R1 � D . (B-12)
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Figure B-3. Estimating
maximum measure-
ment time duration.
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Then, the total length L of a tube along the wind would satisfy

L = D + 2R1 � 3D = 3|RDS | . (B-13)

The computer algorithm uses the equality, and then chooses

T = L/w = 3|RDS |/w , (B-14)

or uses T = TR given by equation (B-9), whichever is larger. For most cases
of interest, equation (B-14) yields the larger value.

The minimum number of points N needed in the discrete time series for
the A(t) is then obtained by the use of equations (B-4) and (B-14),

N � T/∆t =
3RDS4βνs

w
=

6
π
ksR

DS , (B-15)

or by the use of equations (B-4) and (B-9),

N � T/∆t =
10πamax2βνs√

2w
=

10√
2
ksamax , (B-16)

whichever is larger. Note that usually RDS � amax.

Since N is used to dimension arrays, the FORTRAN source code actually
defines a default value N = 6048 as a parameter. The user should verify
that this is large enough to satisfy equations (B-15) and (B-16), and if it is
not, change it and recompile. The values of T and L are calculated inter-
nally by putting (T = (N − 1)∆t, L = wT ) .

B-3 Turbule Model Parameters

As shown by Goedecke and Auvermann,1 equations (67) and (68), for Kol-
mogorov spectra of isotropic homogeneous turbulence, the structure pa-
rameters

(
C2
T
, C2
v

)
are related to the turbule parameters by

C2
T

= (3.78/µ) (φ)
(
∆T1/a

1/3
1

)2
J8/3 , (B-17)

C2
v = (0.68/µ) (φ)

(
Ω1a

2/3
1

)2
J14/3 ,

1G. H. Goedecke and H. J. Auvermann, “Acoustic scattering by atmospheric turbules,”
J. Acoust. Soc. Am. 102 (1997), pp 759–771.
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where successively smaller turbule sizes aα are related by

aα+1/aα = e−µ ≡ N−1
d , (B-18)

where a1 = amax is the outer scale length, φ = n1a1 = nαaα is the packing
fraction (the same for all sizes), and nα is the number density of turbules of
size α, (∆T1 ,Ω1) are the (temperature fluctuations, angular velocity) of the
largest turbules, and here

Js ≡
∫ ∞

0
dx xse−x

2
=

1
2
Γ

(
s+ 1

2

)
, (B-19)

where Γ is the gamma function. From tables of Γ functions,

J8/3 =
1
2
Γ

(
11
6

)
≈ 0.47 , (B-20)

J14/3 =
1
2
Γ

(
17
6

)
=

11
12

Γ
(

11
6

)
≈ 0.86 .

The (∆Tα ,Ωα) for size aα are scaled from (∆T1 ,Ω1) as in equations (31)
and (32) from the main report. The parameter µ = ln Nd in equations
(B-14) and (B-15) is calculated after the inner scale length aNs , the small-
est turbule size, and the number of sizes Ns in the cascade are chosen by
the user:

aNs/a1 = exp[−µ(Ns − 1)]→ µ = −(Ns − 1)−1 ln(aNs/a1) . (B-21)

Default values are Ns = 6, a1 = 1.5 m, aNs = a6 = 4.6875 cm, which
yield µ = ln 2, Nd = 2, i. e., a halving of sizes with each step. Doubling
Ns while keeping (a1 , aNs) unchanged should approximately double the
running time of the code. The effects of changing Ns, a1 , and/or aNs had
not been investigated at the time of this writing.

Values of
(
C2
T
, C2
v

)
may be input, in meter-kilogram-second units, and then

the appropriate values of (ΓT = ∆T1/T0 , Γv = Ω1a1/c) are calculated. If the
valuesC2

T
= C2

v = 0 are input, then the code sets default values of (∆T1 ,Ω1)
by putting

∆T1/T0 = ΓT , Ω1a1/c = Γv , (B-22)

where (ΓT ,Γv) may be input. The algorithm begins calculating with the
largest turbules (size a1). It places the first tube of turbules of square cross
section d1 = a1/φ

1/3 along the wind direction (x′-axis) just on the y′ side
of the origin and centered along the x′-axis. The origin is chosen halfway
between the source and the detector. That is, the centerline of the tube is
y′ = d1/2, z = RS(3) + d0 + d1/2. (The base of this tube is calculated to be
d0 m above the height of the source or detector above ground, whichever is
greater.) The length of the tube is chosen by equation (B-13). Then at t = 0,
one turbule is placed randomly inside each cubical cell of side length d1 in
the tube, such that each turbule center can have (x′, y′, z′) displacements
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from its cell center from 0 to ±d/4 with equal independent probabilities.
Then

(
AT (t), Av(t)

)
are calculated and accumulated for all these turbules.

Any part of a turbule that leaves the tube (at x′ = L/2) during time T is
introduced at x′ = −L/2 + w∆t, the next time step, thus keeping the
frozen turbulence model in steady state.

Successive tubes for the largest turbules are chosen in such a way that tubes
chosen later are further from the origin, in general. For example, the sec-
ond tube would have a centerline

(
y′=−d1/2, z

′=RS(3) + d0 + d1/2
)
. The

third and fourth tubes would be above the first and second, respectively,
with centerlines (y′ = ±d1/2, z

′ = RS(3) + d0 + 3d1/2). The fifth and
sixth tubes, if used, would be one step further away in y′, with centerlines
y′ = ±3d1/2, z

′ = RS(3) + d0 + d1/2. This selection continues until input
limits or default limits are reached.

For smaller turbules, successive tubes are chosen that fill all the largest
tubes used. This implies, for example, that if a2 = a1/2, then there will
be four times as many tubes of size d2 = a2/φ

1/3 = d1/2 as there are for
size d1 . It is impractical to calculate turbule by turbule for the smaller tur-
bules, because there are so many of them. Instead, the time-shift algorithm
is employed for turbules with

(
RTS , RDT

)
�

(
ksd

2 or k−1
s

)
, whichever is

larger, as described in the main report. The crucial values of RTS and RDT

for this determination are the values for which the maximum signal occurs.
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Appendix C. Quick Doppler Formula

Refer to figure 1 of the main report (p 3) for the geometry. The turbule is
at RT (t) = b(t) = b0 + wt, where w = wind velocity. Pulses are emitted
from the source S located at position RS ≡ s at times tS

1
, tS

2
> tS

1
with

tS
2
− tS

1
≡ 2π
ωs
, ωs = source angular frequency. Then the distances from the

source to the turbule at times (tT
1
, tT

2
) are

RTS
1

= |b(tT
1
)− s| = |b0 − s + wtT

1
| ,

RTS
2

= |b0 − s + wtT
2
| = |RTS

1
+ w(tT

2
− tT

1
)|

= RTS
1

+ w · R̂TS
1

(tT
2
− tT

1
) . (C-1)

Thus these pulses get to the turbule at times (tT
1
, tT

2
) given by

tT
1

= tS
1

+
RTS

1

c(1 + β · R̂TS
1

)
≈ tS

1
+
RTS

1

c
(1− β · R̂TS

1
) ,

tT
2

= tS
2

+
RTS

2

c(1 + β · R̂TS
2

)
≈ tS

2
+
RTS

2

c
(1− β · R̂TS

2
)

≈ tS
2

+ 1
c

(
RTS

1
+ w · R̂TS

1
(tT

2
− tT

1
)
)

(1− β · R̂TS
1

) , (C-2)

so

tT
2
− tT

1
= tS

2
− tS

1
+ β · R̂TS

1
(tT

2
− tT

1
) ≈ (tS

2
− tS

1
)(1 + β · R̂TS

1
) . (C-3)

The distances from the turbule to a detector located at RD = d at times
(tT

1
, tT

2
) are

RDT
1

= |d− b0 −wtT
1
| ,

RDT
2

= |d− b0 −wtT
1
−w(tT

2
− tT

1
)| ≈ RDT

1

(
w · R̂DT

1

) (
tT
2
− tT

1

)
, (C-4)

so the times (tD
1
, tD

2
) at which the scattered pulses are received by the de-

tector D are
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Thus to order β,
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Therefore the frequency observed at the detector is

ωobs =
2π

tD
2
− tD

1

≈ ωs(1 + β · (R̂DT
1
− R̂TS

1
)) . (C-7)

This is ωobs at D at time tD
1

= tT
1

+ 1
c |d− b0 −wtT

1
| ≈ tS

1
+ 1
c

(
RTS

1
+RDT

1

)
.

Both R̂DT
1

and R̂TS
2

should be evaluated at time tT
1

in this formula for ωobs .
To first order in β, this is the same result obtained in the main report directly
from the expressions for the waves

(
pTas(t), p

v
as(t)

)
at the detector.
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Appendix D. Computer Codes

This appendix contains descriptions of four FORTRAN codes. They are
written in structured FORTRAN 77 standard form. The Microsoft Inter-
national Mathematical and Statistical Library is used for random number
generation and calculation of fast Fourier transforms. The Microsoft portlib
routine TIMER() was used to time the codes. The codes are input.for used
with sloweddy.for and input1.for used with slowone.for.

The input.for and input1.for codes write parameters to files. The parame-
ters in the files can be edited by a text editor without having to rerun the
input codes.

The description and code (with a list of symbols) for program input follow.
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*******************************************************************************
* Program Input *
* Version 1.0: 11-21-98 *
*******************************************************************************
* This program enters the environment parameters, and the turbule *
* parameters needed for the Slow Eddy program. These parameters *
* are written to the file "input.txt." *
*******************************************************************************

PROGRAM INPUT
IMPLICIT NONE
INTEGER NMAX
PARAMETER(NMAX=6400)

CHARACTER CONFIG

INTEGER IT,NS,NT

REAL ALPHA,AP,A1,C,D(3),GAMT,GAMV,MW,NUS,PF
REAL S(3),YC1(20),ZB,ZC1(20)

OPEN(1,FILE=’input.txt’)

c The following inputs have to do with the environment for the turbules.
PRINT *
PRINT *, ’Enter the sound speed in meters per second:’
READ *, C

PRINT *
PRINT *, ’Enter the sound frequency of the source in Hertz:’
READ *, NUS

PRINT *
PRINT *, ’Enter the reference distance’
PRINT *, ’from the source in meters:’
PRINT *, ’(If not sure, enter 1)’
READ *, AP

PRINT *
PRINT *, ’Enter the x,y,z coordinates’
PRINT *, ’of the source in meters:’
READ *, S

PRINT *
PRINT *, ’Enter the x,y,z coordinates’
PRINT *, ’of the detector in meters:’
READ *, D

PRINT *
PRINT *, ’Enter the boundary layer height in meters:’
PRINT *, ’(higher than either source or detector)’
READ *, ZB

IF((ZB.LE.S(3)).OR.(ZB.LE.D(3))) THEN
PRINT *, ’The turbule(s) will pass through source or detector.’
PRINT *, ’Please run the input program again, and enter a’
PRINT *, ’boundary layer height greater than the source or’
PRINT *, ’detector height.’
STOP

ENDIF
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PRINT *
PRINT *, ’Enter the wind speed in meters per second:’
READ *, MW

PRINT *
PRINT *, ’Enter the wind direction in degrees’
PRINT *, ’measured counter clockwise from the x-axis:’
READ *, ALPHA

c The following inputs have to do with the turbules themselves.
PRINT *
PRINT *, ’Enter the size of the largest turbule in meters:’
READ *, A1

PRINT *
PRINT *, ’Enter the packing fraction:’
READ *, PF

PRINT *
PRINT *, ’Enter the temperature scale parameter:’
READ *, GAMT

PRINT *
PRINT *, ’Enter the velocity scale parameter:’
READ *, GAMV
PRINT *
PRINT *, ’Diagrams for configurations are given below:’
PRINT *, ’(hit "enter" to see more)’
READ *
PRINT *
PRINT *, ’ Configuration choices ’
PRINT *
PRINT *
PRINT *, ’ ---- ’
PRINT *, ’a: | | ’
PRINT *, ’ ---- ’
PRINT *
PRINT *
PRINT *, ’ ---- ---- ’
PRINT *, ’b: | | | | ’
PRINT *, ’ ---- ---- ’
PRINT *
PRINT *, ’(hit "enter" to see more)’
READ *
PRINT *
PRINT *, ’ ---- ---- ’
PRINT *, ’ | | | | ’
PRINT *, ’ ---- ---- ’
PRINT *, ’ ---- ---- ’
PRINT *, ’c: | | | | ’
PRINT *, ’ ---- ---- ’
PRINT *
PRINT *
PRINT *, ’ ---- ---- ---- ---- ’
PRINT *, ’d: | | | | | | | | ’
PRINT *, ’ ---- ---- ---- ---- ’
PRINT *
PRINT *, ’(hit "enter" to see more)’
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READ *
PRINT *
PRINT *, ’ ---- ---- ’
PRINT *, ’ | | | | ’
PRINT *, ’ ---- ---- ’
PRINT *, ’ ---- ---- ---- ---- ’
PRINT *, ’e: | | | | | | | | ’
PRINT *, ’ ---- ---- ---- ---- ’
PRINT *
PRINT *
PRINT *, ’ ---- ---- ---- ---- ’
PRINT *, ’ | | | | | | | | ’
PRINT *, ’ ---- ---- ---- ---- ’
PRINT *, ’ ---- ---- ---- ---- ’
PRINT *, ’f: | | | | | | | | ’
PRINT *, ’ ---- ---- ---- ---- ’
PRINT *
PRINT *
PRINT *, ’g: User defined geometry:’
PRINT *

PRINT *
PRINT *, ’Enter the letter (a-g) corresponding to the’
PRINT *, ’the appropriate configuration desired.’
PRINT *, ’(make sure letter is lower case)’
READ *, CONFIG
PRINT *, ’Configuration chosen was ’,CONFIG

PRINT *
PRINT *, ’Enter the total number of turbule sizes:’
READ *, NS

c If configuration g is chosen, the user will need to enter
c the number a large tubes, and the y,z coordinates to the
c center lines of these tubes.

IF(CONFIG.EQ.’g’) THEN
PRINT *
PRINT *, ’Enter the number of large tubes:’
PRINT *, ’(maximum number allowed is 20)’
READ *, NT

DO 5 IT=1,NT
PRINT *
PRINT *, ’Enter the Y and Z coordinates of the center’
PRINT *, ’of large tube number’,IT
PRINT *, ’in dimensionless units:’
READ *, YC1(IT),ZC1(IT)

5 CONTINUE
ENDIF

c All parameters entered above are written to the file ’input.txt’
c used in the Slow Eddy FORTRAN program.

WRITE(1,*) C
WRITE(1,*) NUS
WRITE(1,*) AP
WRITE(1,*) S

WRITE(1,*) D
WRITE(1,*) ZB

WRITE(1,*) MW
WRITE(1,*) ALPHA
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WRITE(1,*) A1
WRITE(1,*) PF
WRITE(1,*) GAMT
WRITE(1,*) GAMV
WRITE(1,*) CONFIG

WRITE(1,*) NS
WRITE(1,*) NT

DO 20 IT=1,20
WRITE(1,*) YC1(IT),ZC1(IT)

20 CONTINUE

CLOSE(1)

END
*-----------------------------------------------------------------------------*
*-------------------------------- List of Symbols --------------------------*
*-----------------------------------------------------------------------------*
*
* ALPHA : real; angle of wind relative to non-rotated x-axis.
* AP : real; ’a prime’, reference distance from the source.
* A1 : real; size of largest turbule.
* C : real; speed of sound.
* CONFIG : character; abbreviation for ’configuration’ used to choose
* predefined tube configurations.
* D(3) : real; position vector to the detector.
* GAMT : real; ’capital gamma sub T’.
* GAMV : real; ’capital gamma sub v’.
* IT : integer; index for largest tube, with range from 1 to NT.
* MW : real; ’magnitude of wind’.
* NMAX : integer; maximum number of time (and frequency) data points
* NS : integer; number of sizes of turbules.
* NT : integer; number of largest tubes.
* NUS : real; ’Greek letter nu sub s’, the frequency
* of the source.
* PF : real; ’packing fraction’.
* S(3) : real; position vector to the source.
* YC1(20) : real; y coordinate to center line of largest tube, dimensionless.
* ZB : real; height above ground where scattering volume begins.
* ZC1(20) : real; z coordinate to center line of largest tube, dimensionless.

Descriptions of Program Slow Eddy and its eight subroutines and a list of symbols follows:

*******************************************************************************
* Program Slow Eddy *
* Version 1.0: 11-21-98 *
*******************************************************************************
* This program calculates the pressure amplitudes as a function of time, *
* and their Fourier transforms as a function of frequency. This program *
* uses input from the file ’input.txt’ that is generated by running the *
* ’input.for’ Fortran program. The Slow Eddy program is designed to populate *
* the scattering volume with tubes of turbules. There are six predefined *
* configurations (a-f) and one configuration choice specified by the user (g).*
* The tubes are populated with NS different sizes of turbules, keeping the *
* packing fraction constant. Each smaller size is obtained by halving the *
* previous size. A separate program is provided to run one turbule by itself *
* or one tube of turbules, all the same size. It is called ’slowone.for’. *
* Subroutines: choise, direct, dot, multi, onetrb, output, rotate, tau. *
*******************************************************************************
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PROGRAM MAIN

SUBROUTINE CHOICE(CONFIG)
c This subroutine sets parameters for predefined configurations
c chosen by the user in the ’input.txt’ file. It is assumed that
c configuration a has been run before configuration b, etc.

SUBROUTINE DIRECT(AMPTT,AMPVT)
c This subroutine calculates ’AMPTT’ and ’AMPVT’ one at a time and
c accumulates the results directly (i.e., no time-shifting).
c The ’MSIMSL’ below stands for ’Microsoft International Mathematical
c and Statistical Library’. MSIMSL contains a random number generator
c that the ’DIRECT’ subroutine uses.

SUBROUTINE DOT(V1,V2,V1V2)
c This subroutine calculates the dot product of two, real, three
c component vectors ’V1’ and ’V2’, and names this dot product ’V1V2’.

SUBROUTINE MULTI(AMPT,AMPV)
c The ’MULTI’ subroutine is a key subroutine in this program. It is named
c ’MULTI’ because it is what drives the calculations for multiple tubes
c with multiple turbules.

SUBROUTINE ONETRB(B0,AT,BV,K)
c The ’ONETRB’ subroutine calculates ’AT’, BV’, and ’K’
c for one turbule, as the turbule travels the total length of
c the tube. The ’ONETRB’ subroutine is used by both the ’DIRECT’
c subroutine, and the time-shifting ’TAU’ subroutine.
c The ’MSIMSL’ subroutine library is need for the random number generator.

SUBROUTINE OUTPUT(AMPT,AMPV)
c This subroutine takes the complex amplitudes ’AMPT’ and ’AMPV’
c as functions of time, and calculates the magnitude, and the real
c and imaginary parts. It also performs the FFT on them. Then the
c subroutine writes the data to files called ’time.txt’ and ’fft.txt’

SUBROUTINE ROTATE(ALPHA,MW)
c The ’ROTATE’ subroutine rotates the coordinate system so that the wind
c direction is along the x-axis. The origin is also moved to the point
c located half way between the source and detector.

SUBROUTINE TAU(AMPTT,AMPVT)
c The ’TAU’ subroutine employs the time-shifting procedure.

*-----------------------------------------------------------------------------*
*-------------------------------- List of Symbols --------------------------*
*-----------------------------------------------------------------------------*
* A : real; characteristic size of turbule.
* AAT(NMAX) : complex; temperature amplitude accumulation variable used
* in the ’CHOICE’ subroutine.
* AAV(NMAX) : complex; velocity amplitude accumulation variable used
* in the ’CHOICE’ subroutine.
* AF : real; ’angular frequency’ equal to 2*Pi*nu_s.
* ALPHA : real; angle of wind relative to non-rotated x-axis.
* AMPT(NMAX) : complex; amplitude due to temperature fluctuations.
* AMPTT(NMAX): complex; temperature amplitude accumulation variable for a
* tube used in the ’DIRECT’ and ’TAU’ subroutines.
* AMPV(NMAX) : complex; amplitude due to velocity fluctuations.
* AMPVT(NMAX): complex; velocity amplitude accumulation variable for a
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* tube used in the ’DIRECT’ and ’TAU’ subroutines.
* AT(NMAX) : complex; temperature amplitude for one turbule used
* in the ’ONETRB’ subroutine.
* AT0(NMAX) : complex; temperature amplitude for one turbule used
* in the ’TAU’ subroutine in the far field.
* AV(NMAX) : complex; velocity amplitude for one turbule used
* in the ’ONETRB’ subroutine.
* AV0 : complex; velocity amplitude for one turbule used
* in the ’TAU’ subroutine in the far field.
* AP : real; ’a prime’, reference distance from the source.
* A1 : real; size of largest turbule.
* BCY : real; y coordinate of centerline of largest tube.
* BCZ : real; z coordinate of centerline of largest tube.
* BRK : complex; ’bracket’, a defined variable.
* BT : real; the location of the turbule as a function of time.
* BTA(3) : real; the Greek letter ’beta’. One of the
* IMSL library subroutines used ’beta’, so ’BTA’ was used
* as an alternate abbreviation.
* BTARS : real; the dot product of ’BTA’ and ’RS’.
* BTAR0 : real; the dot product of ’BTA’ and ’R0’.
* BV(NMAX,3) : complex; ’B sub v’, a defined variable.
* B0(3) : real; initial location of turbule.
* C : real; speed of sound.
* CALPHA : real; ’cosine of alpha’.
* COEF : real; ’coefficient’, a defined variable.
* CONFIG : character; abbreviation for ’configuration’ used to choose
* predefined tube configurations.
* CPHI : real; ’cosine of phi’.
* CROSS(3) : real; the cross product of ’RDTH’ and ’K’.
* CTEMP : complex; a temporary complex variable.
* CTHETA : real; ’cosine of theta’.
* D(3) : real; position vector to the detector.
* DA : real; distance between center of cells for size A.
* DCM(2) : real; position vector to detector relative to ’center of mass’
* position of source and detector.
* DI : integer; time-shifting increment index.
* DNS : real; distance between center of cells for smallest size.
* DS : real; ’D sub s’, a defined variable.
* DT : real; time step increment.
* DTMAX : real; maximum time step increment.
* DW(2) : real; x and y components of position vector to detector
* in the rotated ’wind’ frame.
* D1 : real; distance between center of cells for largest size A1.
* ETA(3) : real; Greek letter ’eta’, random displacement vector.
* FAMPT(NMAX): complex; Fourier transform of ’AMPT’.
* FAMPV(NMAX): complex; Fourier transform of ’AMPV’.
* FRQ(NMAX) : real; abbreviation for ’frequency’, the independent variable
* of the Fourier transform.
* GAMMA2 : real; abbreviation for ’lower case gamma, squared’,
* a defined variable.
* GAMT : real; ’capital gamma sub T’.
* GAMV : real; ’capital gamma sub v’.
* GAUSS : real; ’gaussian’, a variable that has a form that
* resembles a gaussian function.
* I : integer; time index, with range from 1 to N.
* IAMPT : real; ’imaginary part of AMPT’.
* IAMPV : real; ’imaginary part of AMPV’.
* II : complex; the imaginary number ’i’, the square root of -1.
* IM : integer; index for turbule in a tube, with range from 1 to M.
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* INS : integer; number of time points in smallest cell.
* IS : integer; index for sizes with range from 1 to NS.
* IT : integer; index for largest tube, with range from 1 to NT.
* I1 : integer; number of time points in largest cell.
* J : integer; index for vector components, with range 1 to 3.
* J2 : integer; running index for y component of a vector.
* J3 : integer; running index for z component of a vector.
* K(NMAX,3) : real; a defined variable.
* KETA : real; the dot product of ’K’ and ’ETA’.
* KS : real; wave number for the source ’k sub s’.
* L : real; length of tubes.
* LMIN : real; minimum length that tubes can have.
* M : integer; number of turbules in a tube.
* MAMPT : real; ’magnitude of AMPT’.
* MAMPV : real; ’magnitude of AMPV’.
* MBTA : real; ’magnitude of BTA’.
* MFAMPT : real; ’magnitude of Fourier transform of AMPT’.
* MFAMPV : real; ’magnitude of Fourier transform of AMPV’.
* MK : real; ’magnitude of K’.
* MRDT : real; ’magnitude of RDT’.
* MRS : real; ’magnitude of RS’.
* MRTS : real; ’magnitude of RTS’.
* MR0 : real; ’magnitude of R0’.
* MW : real; ’magnitude of W’.
* M1 : integer; number of turbules in largest tube.
* N : integer; number of time (and frequency) data points used.
* NMAX : integer; maximum number of time (and frequency) data points
* that can be used.
* NMIN : integer; minimum number of time (and frequency) data points
* that can be used.
* NS : integer; number of sizes of turbules.
* NST : integer; number of tubes in largest cell after each halving.
* NT : integer; number of largest tubes.
* NUS : real; ’Greek letter nu sub s’, the frequency
* of the source.
* OMEGAH(3) : real; the unit vector ’omega hat’. Omega
* is rotation velocity vector of a turbule.
* OMEGA1 : real; scaling parameter for the velocity turbules.
* PF : real; ’packing fraction’.
* PHASE : real; a defined variable in a complex exponent.
* PI : real; variable for 3.14159...
* RAMPT : real; ’real part of AMPT’.
* RAMPV : real; ’real part of AMPV’.
* RDT(3) : real; vector from turbule to detector.
* RDTH(3) : real; ’RDT hat’, unit vector in direction of ’RDT’.
* RN(4) : real; a random number array.
* RNA(3) : real; a random number array for angles.
* RNT(2) : real; a random number array for temperature sign of + or -.
* RPHASE : complex; abbreviation for the random phase, a defined variable.
* RS(3) : real; a defined variable.
* RTS(3) : real; vector from source to turbule.
* RTSH(3) : real; abbreviation for ’RTS hat’, a unit vector in the
* direction of ’RTS’.
* R0(3) : real; a defined variable.
* R0H(3) : real; abbreviation for ’R0 hat’, a unit vector in the
* direction of ’R0’.
* R0RDTH : real; the dot product of ’R0H’ and ’RDTH’.
* S(3) : real; position vector to the source.
* SALPHA : real; ’sine of alpha’.
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* SCM(2) : real; position vector to source relative to ’center of mass’
* position of source and detector.
* SIGMA2 : real; ’sigma squared’, a defined variable.
* SPHI : real; ’sine of phi’.
* STHETA : real; ’sine of theta’.
* SW(2) : real; x and y components of position vector to source
* in the rotated ’wind’ frame.
* T : real; time variable.
* TEMP : real; a temporary real variable.
* TIMER : real; gives value of total time for the program to run.
* TMAX : real; largest value of time variable.
* TS : real; time for calculations for one size to be completed.
* TSF : real; ’temperature scale factor’, a defined variable.
* TWOPI : real; ’2*pi’.
* VSF : real; ’velocity scale factor’, a defined variable.
* V1(3) : real; arbitrary vector used in the ’DOT’ subroutine.
* V2(3) : real; arbitrary vector used in the ’DOT’ subroutine.
* V1V2 : real; result of the dot product of ’V1’ and ’V2’ in the
* ’DOT’ subroutine
* W(3) : real; wind velocity vector.
* XDS : real; x component of the vector from the source
* to the detector.
* YC : real; y coordinate to center line of tube for size A.
* YC1(20) : real; y coordinate to center line of tube for size A1.
* ZB : real; height above ground where scattering volume begins.
* ZC : real; z coordinate to center line of tube for size A.
* ZC1(20) : real; z coordinate to center line of tube for size A1.
* ZI(3) : real; Greek letter ’zi’, random variable
* between +1/4 and -1/4.

Descriptions of Program Input1 and Program Slow One follow:

*******************************************************************************
* Program Input1 *
* Version 1.0: 11-21-98 *
*******************************************************************************
* This program enters the environment parameters, and the turbule *
* parameters needed for the slowone.for program. These parameters *
* are written to the file "input1.txt." *
*******************************************************************************

*******************************************************************************
* Program Slow One *
* Version 1.0: 11-21-98 *
*******************************************************************************
* This program calculates the pressure amplitudes as a function of time, *
* and their Fourier transforms as a function of frequency. This program *
* uses input from the file ’input1.txt’ that is generated by running the *
* ’input1.for’ Fortran program. The Slow One program is designed to run *
* one tube of turbules of one size, or just one turbule by itself. *
* Subroutines: choice, direct, dot, multi, onetrb, output, rotate, tau. *
**********************************************************************************
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Subroutines and symbols for Program Input1/Program Slow One are al-
most identical with those of Program Input/Program Slow Eddy.

Flow charts for Program Slow Eddy and its eight subroutines are given in
figures D-1, D-2, D-3, D-4, and D-5.

Figure D-1. Flow chart
for main program.
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Figure D-2. Flow chart
for subroutine CHOICE.
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Figure D-3. Flow chart
for subroutine MULTI.

No

Yes

Turbule size loop

Tube loop

No

Yes

No

Yes

Start
subroutine

MULTI

Is  A
>

0.5 m?

Call
DIRECT

Call
TAU

Is IS
=

NS  ? 

Is  IT
=

NT  ?

Return

Yes

60



Figure D-4. Flow chart
for subroutines
ROTATE, DIRECT, and
TAU.
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Figure D-5. Flow chart
for subroutines
ONETRB, OUTPUT,
and DOT.
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Not shown in figure D-2 for subroutine CHOICE is the intermediate save
operations in branches for which the variable CONFIG is b through e. These
are different in each branch, with typical file names given in table D-1.

Table D-1. Intermediate
save operations. CONFIG File name(s)

b cf12.txt

c cf34.txt and cf1234.txt

d cf56.txt

e cf123456.txt*
*This branch does not call subroutine
MULTI.
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